

F. JEGERLEHNER, DESY Zeuthen

PHOTON 2003, April 7th - 11th, 2003, Frascati (Italy)

F. Jegerlehner

Outline of Talk:

- 1 Introduction
- **2** Evaluation of $\alpha(M_Z)$
- 3 Evaluation of $a_{\mu}\equiv (g-2)_{\mu}/2$
- **4** What pseudo-observable do we need?
- **5** e^+e^- -cross sections via τ -decay spectral functions
- **(6)** Iso-spin breaking corrections in τ vs. e^+e^-
- **7** Status and Outlook

Introduction

Non-perturbative hadronic effects in electroweak precision observables, main effect via

effective finestructure "constant" $\alpha(E)$

(charge screening by vacuum polarization)

Of particular interest:

$$lpha(M_Z)$$
 and $a_\mu\equiv (g-2)_\mu/2$

- electroweak effects (leptons etc.) calculable in perturbation theory
- strong interaction effects (hadrons/quarks etc.) perturbation theory fails

$$\implies$$
 Dispersion integrals over e^+e^- -data

encoded in $R_{\gamma}(s) \equiv \frac{\sigma(e^+e^- \to \gamma^* \to \text{hadrons})}{\sigma(e^+e^- \to \gamma^* \to \mu^+\mu^-)}$

Errors of data \implies theoretical uncertainties !!!

The art of getting precise results from non-precision measurements !

New challenge for precision experiments on $\sigma(e^+e^- \rightarrow hadrons)$ KLOE, BABAR, (S. Müller's next talk)

	Hadronic effects in $(g-2)_{\mu}$ and $lpha(M_Z)$ – theoretical uncertainties
	Experimental:
	$R^{ ext{exp}}(s) = rac{N_{ ext{had}} \left(1 + \delta_{ ext{RC}} ight)}{N_{ ext{norm}} arepsilon} \; rac{\sigma_{ ext{norm}}(s)}{\sigma_{\mu\mu, \; 0}(s)}$
$N_{ m had}$	number of observed hadronic events
$N_{ m norm}$	number of observed normalizing events
რ	efficiency-acceptance product of hadronic events
$\delta_{ m RC}$	radiative corrections to hadron production
$\sigma_{ m norm}(s)$	physical cross section for normalizing events *
$\sigma_{\mu\mu,\ 0}(s)$	$=4\pi \alpha^2/3s$ normalization
* including all r used for the l	adiative corrections integrated over the acceptance uminosity measurement
% requires p i	recise theory knowledge!
Normalizati	on: mostly by Bhabha [or $\mu\mu$ itself]
In general:	$lpha(\mu)$ enters with ${f different}$ scales μ in "had" and "norm"
E lassiatase Dhoton Di	

Recent progress (and a step back?) :

- 2002: Final CMD-2 $\pi\pi$ -data: syst error 1.4% \rightarrow 0.6 % ! some other CMD-2, SND data at E < 1.4 GeV new VP subtraction! (Akhmetshin et al.)
- 2001: BES-II *R*-data: syst error 20% → 7% ! region 2.0 GeV to 5.0 GeV
 (Bai et al. 2000, 2002)
- 2000: *⊤*-data
 (ALEPH, OPAL, CLEO Collab., 1996-2002)
- Iso-spin breaking effects τ -data vs. e^+e^- -data (Cirigliano et al. 2002)
- New situation: τ -data not compatible with e^+e^- -data at 10% level
- Previously unaccounted contributions: $e^+e^- o \sigma\gamma,\;f_0\gamma$ to $a_\mu^{
 m had}$ (data very poor) $\Rightarrow \delta a^{S}_{\mu} = 11.75(8.25) \times 10^{-10}$, i.e., $\sim +1\sigma$

(Narison 2003)

Photon 2003

• R(e) data in to $\sqrt{e} - E$, -E CeV

- R(s) data up to $\sqrt{s} = E_{cut} = 5$ GeV and for Υ resonances region between 9.6 and 13 GeV
- perturbative QCD from 5.0 to 9.6 GeV

and for the high energy tail above 13 GeV

F. Jegerlehner Photon 2003 – April 7-11, 2003 –

$\Box \alpha(M_Z)$ in precision physics

Uncertainties of hadronic contributions to effective α are a problem for electroweak precision physics:

 $lpha \;,\; G_{\mu}, M_{Z}$ most precise input parameters partially non-perturbative precision predictions relationship $\sin^2 \Theta_f, v_f, a_f, M_W, \Gamma_Z, \Gamma_W, \cdots$ $\alpha(M_Z), G_\mu, M_Z$ best effective input parameters for VB physics (Z,W) etc. \sim 3.6 \times 10⁻⁹ $\delta \alpha$ α $\frac{\delta G_{\mu}}{G_{\mu}}$ ~ 8.6 × 10⁻⁶ $\frac{\delta M_Z}{M_Z}$ ~ 2.4 × 10⁻⁵ $\frac{\delta \alpha(M_Z)}{\alpha(M_Z)} \sim 1.6 \div 6.8 \times 10^{-4}$ (present) $\frac{\delta\alpha(M_Z)}{\alpha(M_Z)}$ \sim 5.3 \times 10⁻⁵ (TESLA requirement) LEP/SLD: $\sin^2 \Theta_{\text{eff}} = (1 - g_{Vl}/g_{Al})/4 = 0.23148 \pm 0.00017$ $\delta\Delta\alpha(M_Z) = 0.00036 \quad \Rightarrow \quad \delta\sin^2\Theta_{\text{eff}} = 0.00013$ affects Higgs mass bounds !!!

F. Jegerlehner Photon 2003 – April 7-11, 2003 –

Photon 2003

Photon 2003

F. Jegerlehner

Photon 2003

– April 7-11, 2003 –

 $(a_{\mu}$ -11659000) × 10⁻¹⁰

Given theory results only differ by $a_{\mu}^{\mathrm{had}(1)}$!

F. Jegerlehner Photon 2003 – April 7-11, 2003 –

All kind of physics meets !

Add theoretical prediction for FS radiation (including full photon phase space):

$$|F_{\pi}^{(\gamma)}(s)|^{2} = |F_{\pi}^{(0)}(s)|^{2} \left(1 + \eta(s)\frac{\alpha}{\pi}\right)^{2}$$

corresponding O(lpha) contribution to the anomalous magnetic moment of the muon is to order O(lpha), where $\eta(s)$ is a known correction factor (Schwinger 1989). The

$$\gamma a_{\mu}^{\text{had}} = (38.6 \pm 1.0) \times 10^{-11}$$

F. Jegerlehner Photon 2003 – April 7-11, 2003 –

(see also: Melnikov, Troconiz&Yndurain 2001)

complementary hard photon part (summing to full phase space) V+S log's: $\frac{\alpha}{\pi} C_c \ln(s/m_{\pi}^2), \frac{\alpha}{\pi} C_e \ln(\sqrt{s}/E_{\gamma cut})$ H: log's the same as V+S but precisely of opposite sign! Bloch & Nordsieck: V+S cannot be separated (separately IR divergent) exclusive quantities involve large log's on photon energy cut and collinear logs ! \Rightarrow small positive correction;typically \sim .2% section: $\sigma_0 \left(1 + rac{lpha}{\pi}C ight) \ C$ a constant O(1) like 3/4 for μ FSR, 3 for π FSR (in SQED) fully inclusive = including virtual (V) plus soft (S) plus all hard (H) photons cross All log's cancel in sum (inclusive)! KLN theorem at work (Kinoshita, Lee & Nauenberg) cutting out all hard photons and subtracting V+S using sQED \Rightarrow .5% model ambiguity (sQED vs. fQED)

- adding missing H part using the same model (as used for subtracting V+S) \Rightarrow .1% model ambiguity (sQED vs. fQED)
- this guesstimate does not tell us the true model error!

F. Jegerlehner Allows us to get substantially improved low energy contribution! Work in progress: Colangelo, Gasser, Leutwyler, F.J. relates: space-like data, $\pi\pi$ -scattering phase shifts and time-like data analyticity + unitarity + chiral limit (see also: Geshkenbein ... 89, Ynduràin ... 01) Omnès–Muskhelishvili theorem: How to get phase of $F_{\pi}(s)$? ightarrow severe theoretical constraints! Photon 2003 – April 7-11, 2003 – Hadronic effects in $(g-2)_{\mu}$ and $lpha(M_Z)$ – theoretical uncertainties $|F_{\pi}(s)|^2 \Rightarrow |(1 - \Pi'(s)) F_{\pi}(s)|^2$

ADH 95: • which is dominating in $a_{\mu}^{
m had}$ (72%) • mainly improves the knowledge of the $\pi^+\pi^-$ channel (ho-resonance contribution) Additional " e^+e^- " data: τ -data + CVC $I = 1 ~ \sim ~ 75\%$; $I = 0 ~ \sim 25\% \Longrightarrow \tau$ -data cannot replace e^+e^- -data All kind of isospin breaking effects have to be taken into account !!! $\delta \Delta \alpha$: 0.00067 δa_{μ} : $15.6 \times 10^{-10} \rightarrow 10.2 \times 10^{-10}$ ALEPH, OPAL, CLEO (ADH96, DEHZ02) 0.00065

erlehner Photon 2003 – April 7-11, 2003 –

F. Jegerlehner

F. Jegerlehner e^+e^- -data*= data corrected for iso-spin violations: substantial deviations. DM1/OLYA/CDM1/CDM2 data beyond fluctuations of e^+e^- data, while OPAL data show After correction no systematic deviations between CLEO/ALEPH and Photon 2003 – April 7-11, 2003 – Hadronic effects in $(g-2)_{\mu}$ and $lpha(M_Z)$ – theoretical uncertainties ϵ determined by fit to the data: $\epsilon = 0.00172$ $|F(s)|^2 = (|F(s)|^2 - \text{data}) I | \left(1 + \frac{\epsilon s}{(s_\omega - s)}\right)|^2$ $s_{\omega} = (M_{\omega} - \frac{i}{2}\Gamma_{\omega})^2$ with G. Colangelo, J. Gasser, F. J., H. Leutwyler work in progress (Leutwyler 00)

0,4

0,5

0,6

0,7

0,8

Summary of results:

Contributions to $\Delta a_{\mu}^{
m vacpol}$ from various sources of iso-spin violation (in units of 10^{-11})

for different values of $t_{
m max}$ (in units of GeV 2) .

ω N →	$t_{ m max}$
- 95 - 97 - 97	$S_{\rm EW}$
- 75 - 75 - 75	KIN
- 11 - 10 - 10	ĒM
61 ± 26 ± 3 61 ± 26 ± 3 61 ± 26 ± 3	끢
- 119 - 120 - 120	$\delta a_{\mu}^{\mathrm{IB}}$

F. Jegerlehner Photon 2003 – April 7-11, 2003 –

F. Jegerlehner Photon 2003 – April 7-11, 2003 –

cannot be understood within SM ! likely an experimental problem

ALEPH vs. OPAL no good agreement.

 τ -data may be not so easy; DELPHI, L3 could not measure τ spectral-functions;

Comparison of τ -data:

Hadronic effects in $(g-2)_{\mu}$ and $lpha(M_Z)$ – theoretical uncertainties

F. Jegerlehner Photon 2003 – April 7-11, 2003 –

Hadronic effects in $(g-2)_{\mu}$ and $lpha(M_Z)$ – theoretical uncertainties

F. Jegerlehner Photon 2003 – April 7-11, 2003 –

$x_{\mu}^{\text{max}} \lesssim 20 \times 10^{-11}$	$x_{\mu}^{\text{max}} \lesssim 26 \times 10^{-11}$ from 2	$x_{\mu\nu\nu}^{\mu\nu\nu} \gtrsim 01 \times 02 \lesssim x_{\mu\nu}^{\mu\nu}$	had ~ <u>oo . 10-11</u>	4		e Table is in progress.	el of precision as indicated	late radiative corrections	etical work with the aim			n exclusive channels	$\mu^{ m had} = a_{\mu}^{ m had} imes 10^{10}$	Contributions to	
$M_{\Upsilon} < E$	$M_{J/\psi} \leq E \leq M_{\Upsilon}$	${ m GeV} \le E \le M_{J/\psi}$	$p\bar{p}$	$\pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$	$\pi^+\pi^-\pi^+\pi^-\pi^0$	$K_S K_L$	K^+K^-	3π	$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	$\pi^+\pi^-\pi^+\pi^-$	$\pi^+\pi^-\pi^0\pi^0$	φ	$\omega ightarrow 3\pi$	$ ho, \omega ightarrow \pi^+\pi^-$	channel
کہ تی	20	22	0.2	0.5	1.8	<u> </u>	4	4	сл	14	24	40	47	506	${ ilde a}^{ m had}_\mu$
								←	10%	•		\leftarrow	2	0.39	acc

Radiative return: inclusive method

Photon tagging measurements: KLOE/Frascati, BaBar/SLAC, Belle/KeK

interference): Normally "observed" cross section (C-invariant cuts, one-loop \rightarrow no initial-final state

$$egin{aligned} & \sigma^{
m obs}(s) &= & \sigma_0(s) \, \left[1 + \delta_{
m ini}(\Lambda_{
m IR}) + \delta_{
m fn}(\Lambda_{
m IR})
ight] \ & + \, \int_{4m_\pi^2}^{s-2\sqrt{s}\Lambda_{
m IR}} \, ds' \, \sigma_0(s')
ho_{
m ini}(s,s') \ & + \, \sigma_0(s) \, \int_{4m_\pi^2}^{s-2\sqrt{s}\Lambda_{
m IR}} \, ds' \,
ho_{
m fn}(s,s') \, , \end{aligned}$$

(only soft photon part known)! unfolding problem to get $\sigma_0(s)$. Here additional problem: $\rho_{fin}(s, s')$ model-dependent

Experimentally: acceptance cuts, efficiencies etc. in addition

the observed experimental pion-pair spectral function. photon energy is determined. The point cross sections are assumed to be given by theory and $d\sigma/ds'$ is us to get the pion form factor unfolded from photon radiation directly as for fixed s and a given s' the This is a remarkable equation since it tells us that the inclusive pion-pair invariant mass spectrum allows and hence we may resolve for the pion form factor as factor ansatz: anything (photon). s' fixed ightarrow missing energy fixed ightarrow "automatic" unfolding. Pion form Radiative return measurement: look at $\pi^+\pi^-$ invariant mass s' distribution $\left(\frac{d\sigma}{ds'}\right)$ plus $\left(rac{d\sigma}{ds'}
ight)_{
m sym-cut}$ $|F_{\pi}(s')|^2$ $-|F_{\pi}(s)|^2 \left(\frac{d\sigma}{ds'}\right)_{\text{fin, sym-cut}}^{\text{point}} \right\}$ $\frac{1}{\left(\frac{d\sigma}{ds'}\right)_{\text{ini, sym-cut}}^{\text{point}}} \left\{ \left(\frac{d\sigma}{ds'}\right)_{\text{sym-cut}} \right.$ + $|F_{\pi}(s)|^2 \left(\frac{d\sigma}{ds'}\right)_{\text{fin, sym-cut}}^{\text{point}}$ $\|$ $|F_{\pi}(s')|^2 \left(\frac{d\sigma}{ds'}\right)_{\text{ini, sym-cut}}^{\text{point}}$

7 Status and Outlook

- High precision experiments on $a_{\mu}=(g-2)/2$ (BNL) and $\sin^2 \Theta_{\rm eff}$, etc. (LEP/SLD) experimental errors of $R(s)_{
 m had}^{
 m exp}$ and, in particular, to reduce hadronic uncertainties which mainly reflect the imposed a lot of pressure to theory to improve (or find errors in) their calculations
- Experimental groups have reconsider older data to reduce errors (CMD-2); new data to two "incompatible" prediction for $a_{\mu}^{
 m had}$. from BES (20% \rightarrow 7%) (2 GeV to 5 GeV), and au data from ALEPH, OPAL, CLEO. The latter disagree with e^+e^- data in some regions at the 10% level and essentially lead
- All kind of attempts to squeeze out of the old data more precise results; theory only partially can help. What is the appropriate "pseudo observable"?, What is missing (e.g., hard photon effects)?, What is double counted? Etc.
- Key role now for radiative return experiments on low energy hadronic cross sections: special effort by Karlsruhe group (Kühn et al.) to advance calculations. KLOE, BABAR,...; radiative corrections very crucial to get a precise answer. Theory:
- $(g 2)_{\mu}$: need settle ρ region and in addition range 1.4 GeV to 2 GeV.

 $a_{\mu}^{\rm had}$ Future precision physics requires dedicated effort on σ_{had} experimentally as well as Needs for linear collider (like TESLA): requires σ_{had} at 1% level up to the $\Upsilon \Rightarrow$ theoretically (radiative corrections, final state radiation from hadrons etc.) $\delta lpha(M_Z)/lpha(M_Z)\sim 5 imes 10^{-5}.$ At present would allow to get better Higgs boson mass limits. Maximum confusion ! Likely only new experiments can settle the problems

F. Jegerlehner

Photon 2003

– April 7-11, 2003 –

 $\Box \underline{SLAC/BABAR} : R(s) \text{ measurement in range } M_{\Phi} < E_{cm} < M_{J/\psi}$

Also: radiative return $\pi\pi$ inv. mass spectrum at B factories (BABAR/SLAC,

BELLE/KEK)

Long term: need $\sigma(e^+e^- \rightarrow hadrons) \lesssim$ 1% up to 3.6 GeV both for a_{μ}^{had} and for $\Delta \alpha^{had}$:

Distribution of hadronic contributions to $\Delta lpha^{
m had}$

"Adler function based" approach (EJKV99,FJ 00):

experiments

g-2, GigaZ,...