Studies of $\gamma \gamma \rightarrow p \overline{p}$ Production at Belle

Chen-Cheng Kuo Department of Physics, National Central University, Taiwan (for the Belle collaboration)

PHOTON 2003, Frascati

CONTENTS

- 1. Introduction
- 2. Belle Detector
- 3. Data and Monte Carlo Samples
- 4. Event Selection
- 5. Measurement of Cross Sections for $\gamma\gamma \to p\overline{p}$
- 6. Differential Cross Sections in $|\cos \theta^*|$
- 7. Summary

1. Introduction

- The production of γγ → pp̄ is one of the most interesting cases to study QCD. Such events can be produced in great abundance by high luminosity e⁺e⁻ colliders experimentally, and several pQCD predictions have calculated the case γγ → pp̄.
- Defining $W_{\gamma\gamma}$ as the two-photon invariant mass, the cross section for $\gamma\gamma \to p\overline{p}$ is a function of $W_{\gamma\gamma}$.
- Previous measurements for $\sigma_{\gamma\gamma\to p\overline{p}}(W_{\gamma\gamma})$ have exhibited a better agreement in scale with that predicted by the diquark model.
- However, the mechanism for hadron production based on QCD is not well understood for the full range of energy. Better statistics are expected in both lower and higher energies for the exploration from nonperturbative to perturbative region.

- Theoretical framework for $\sigma_{\gamma\gamma\to p\overline{p}}(W_{\gamma\gamma})$ developed by Brodsky and Lepage [Phys. Rev. D 22 (1980)2157], the dimensional counting rules, has given $(d\sigma/dt)_{AB\to CD} \propto s^{2-n}f(t/s)$ where *n* is the total number of constituents of the initial and final states.
 - three-quark model (Farrar et al.) [Nucl. Phys. B 259 (1985) 702] gives n = 8 and $\frac{d\sigma_{\gamma\gamma \to p\overline{p}}}{dt} \propto s^{-6}$

00000

... At medium Q^2 a diquark acts as a quasi-elementary constituent bound by non-perturbative forces whereas at large Q^2 it resembles more and more two quarks kept collinear through the exchange of a hard gluon. ... With the diquarks, we have taken into account non-perturbative effects allowing us to apply this model at medium energies where the pure quark scheme fails. ...

(adapted from Anselmino et al. [Int. J. Mod. Phys. A 4 (1989) 5213])

2. Belle Detector

Detector	Type	Configuration	Performance	
CDC	small cell drift chamber	$8.3 \le r \le 86.3 \ cm$ $-77 \le z \le 160 \ cm$ $17^{\circ} \le \theta \le 150^{\circ}$	$\sigma_{r\phi} = 130 \ \mu m$ $\sigma_z = 200 \sim 1400 \ \mu m$ $\sigma_{p_t}/p_t = 0.3\% \sqrt{p_t^2 + 1}$ $\sigma_{dE/dx} = 6\%$	
ACC	silica aerogel	$17^{\circ} \le \theta \le 127^{\circ}$	K/π separation: 1.2	
TOF	$\operatorname{scintillator}$	$r = 120 \ cm, \ 3m \ \log$ $34^{\circ} \le \theta \le 120^{\circ}$	$\sigma_t = 100 \ ps$ K/π separation: up to 1.2 GeV/c	
ECL	CsI	$ \frac{17^{\circ} \le \theta \le 150^{\circ}}{125 \le r \le 162 \ cm \ (Barr.)} \\ z = -102, +196 \ cm \ (End.) $	$\sigma_E/E = 1.3\%/\sqrt{E(GeV)}$ $\sigma_{pos} = 0.5 \ cm/\sqrt{E(GeV)}$	

3. Data and Monte Carlo Samples

- Data: Low Multi. data corresponding to $L_{int.} = 88.96 \ fb^{-1}$ taken at Belle
- MC samples:

channel	$\gamma\gamma \to p\overline{p}$	$\gamma\gamma ightarrow \pi^+\pi^-$	$\gamma\gamma ightarrow \mu^+\mu^-$	$\gamma\gamma ightarrow e^+e^-$
$N_{generated}$	4000000	8456711	6000000	6058800
$L_{int.}$	/	$\sim 3 \; fb^{-1}$	$\sim 3~fb^{-1}$	$\sim 3 \; fb^{-1}$
$W_{\gamma\gamma} \; (GeV/c^2) \ { m range}$	$2.0 \sim 4.0$	$0.5 \sim 2.41$	$0.5 \sim 10.58$	$0.5 \sim 10.58$
$W_{\gamma\gamma}$ distribution	flat	model calculations [ref.]	model calculations [ref.]	model calculations [ref.]
$\cos heta^* ext{ range}$	$-1 \sim +1$	$-1 \sim +1$	$-1 \sim +1$	$-1 \sim +1$
$\cos heta^*$ distribution	flat	model calculations [ref.]	model calculations [ref.]	model calculations [ref.]

[ref.] V.M.Budnev et al., Phys. Rep. 15 (1974) 182.

- $\gamma \gamma \rightarrow K^+ K^-$: Corresponding to each $W_{\gamma\gamma}$ bin of the $\gamma \gamma \rightarrow p\overline{p}$ sample, we are generating the same number of $\gamma \gamma \rightarrow K^+ K^-$ events with that of $\gamma \gamma \rightarrow p\overline{p}$. The generation of a $\gamma \gamma \rightarrow K^+ K^-$ sample with $N_{generated} = 4000000$ in total for $1.2 < W_{\gamma\gamma} < 3.7 \ GeV/c^2$ is in process.

4. Event Selection

(1) two and only two tracks with opposite sign, each with $p_t > 0.4 \ GeV/c$

(2) $p_t^{event} < 0.2 \ GeV/c$

 $p_t^{event} \equiv |\vec{p}_{t,1} + \vec{p}_{t,2}|$

- (3) $E_{cal}/p < 0.9$ for the positive charged track
- (4) $N_{ph.e.}^{ACC} < 2$ for both tracks
- (5) $\chi_p^2(dE/dx) < 4$ for both tracks

 $\chi_p(dE/dx) \equiv rac{(dE/dx)_{mea.} - (dE/dx)_{exp.}}{\sigma(dE/dx)}$

(6) both tracks reach TOF counters (7) $\chi_p^2(TOF) < 4$ for both tracks

$$\chi_p(TOF) \equiv \frac{T_{mea.} - T_{exp.}}{\sigma(TOF)}$$

(8) λ_p (normalized likelihood) > 0.98 for both tracks

$$\lambda_p \equiv \frac{L_p}{L_p + L_K + L_\pi + L_\mu + L_e}$$
$$L_i \equiv e^{-\frac{1}{2}[\chi_i^2(dE/dx) + \chi_i^2(TOF)]}$$

• Correction of $T_{mea.}$ due to mismatch in TOF for $\gamma\gamma \rightarrow p\overline{p}$

$$\implies T_{mea.}^{cor.} \equiv T_{mea.} + \frac{n}{508.9 \, M \text{Hz}}$$

(in order to minimize $\chi_p^2(TOF)$)

where $508.9 \, MHz$ is

Beam Crossing Rate (RF Frequency)

 $n = 0, 1, 2, 3, \dots$

 $n_1 = n_2$ is required in condition (6) of event selection !

• Redefinition of TOF resolution

Since Belle T0-determination is optimized for typical hadron events where pions are dominant, $\sigma(TOF)$ of pions is assumed for most of the cases. However, for massive particles like p, \overline{p} with $\beta < 0.8$, a much larger TOF resolution (relative to pions at the same momentum) is observed and it is β -dependent. We thus investigate $\chi_p(TOF)$ distributions, using Data and MC samples selected by conditions (1)-(6), separated in different momentum ranges.

- $F \equiv$ resolution of $\chi_p(TOF)$ which is ideally equal to 1. However, F is larger than 1 in the realistic situation. TOF resolution is redefined as $\sigma_{redef.} = F \times \sigma(TOF)$.
- $\chi_p^2(TOF)$ is then replaced by $\chi_{redef.}^2$ in condition (7) of event selection, where $\chi_{redef.} \equiv \frac{T_{mea.}^{cor.} T_{exp.}}{\sigma_{redef.}}$ with p, \overline{p} assumption.

- $\Delta T_{117cm} \equiv (T_{mea.} T_{exp.}) \times \frac{117cm}{l(\text{path length})}$ where 117 cm is corresponding to the radius of the inner wall of TOF
- colorful curves show the ideal formula of ΔT_{117cm} calculated for different particles: $T_{exp.} = T_p$ and $T_{mea.} = T_{K,\pi,\mu,e}$ with $T_i = \frac{m_i}{p\sqrt{1+\frac{p^2}{p^2+m_i^2}}} \times \frac{l}{c}$ for $i = p, K, \pi, \mu, e$

track momentum GeV/c

 ΔT_{117cm} v. momentum with K⁺,K⁻ assumption ΔT_{117cm} v. momentum with K⁺,K⁻ assumption

• Number of exclusive $\gamma\gamma \rightarrow p\overline{p}$ events selected from the 88.96 fb^{-1} data

- 19186 events are selected.
- Charmonium states appear in the $W_{\gamma\gamma}$ spectrum (spin 0: twophoton; spin 1: quasi-compton scattering).
- From MC studies, none of events from $\gamma \gamma \rightarrow \pi^+ \pi^-$, $\mu^+ \mu^-$, $e^+ e^-$ samples survives. The contamination from them (< 0.5%) is thus negligible in our data.

number of events in 20 MeV bins

5. Measurement of Cross Sections for

† only statistical errors (including MC statistics for Belle data) are shown

• If condition (7) is not applied (namely, using conditions (1)-(6) and (8): $\lambda_p > 0.98$), the measured $\sigma'_{\gamma\gamma\to p\overline{p}}(W_{\gamma\gamma})$ is obtained as follows:

Systematic Error at Low Energy due to $|\Delta T| < 2\sigma$ Cut

6. Differential Cross Sections in $|\cos \theta^*|$

• Due to statistics, the differential cross sections are averaged in each $W_{\gamma\gamma}$

range $\left[\frac{d\sigma_{\gamma\gamma\to p\overline{p}}}{d\cos\theta^*}\right]_{average} \equiv \frac{\sum \left(\frac{d\sigma_{\gamma\gamma\to p\overline{p}}}{d\cos\theta^*} \cdot \Delta W_{\gamma\gamma}\right)}{\sum \Delta W_{\gamma\gamma}}\right]$, respectively.

7. Summary

19186 $\gamma\gamma\to p\overline{p}$ candidates in total are selected from the $88.96~fb^{-1}$ Belle data

- $\sigma_{\gamma\gamma
 ightarrow p\overline{p}}(W_{\gamma\gamma})$ from 2 to 4 ${
 m GeV/c^2}$
 - falls as $W_{\gamma\gamma}^{-15}$ for $W_{\gamma\gamma}>2.5~GeV/c^2$
 - different from $W_{\gamma\gamma}^{-10}$ (dimensional counting rules)
 - steeper fall could imply nonperturbative processes at lower energy

• $rac{d\sigma_{\gamma\gamma
ightarrow p\overline{p}}}{d\cos heta^*}$ in $|\cos heta^*|$ up to $|\cos heta^*|=0.7$

- the higher the $W_{\gamma\gamma}$, the better the agreement of $|\cos\theta^*|$ distribution with pQCD predictions ($\sim \frac{1+\cos^2\theta^*}{1-\cos^2\theta^*}$)
- for $2.5 < W_{\gamma\gamma} < 3~GeV/c^2$: much **inconsistency** implies that **pQCD** is **incomplete**
- for $W_{\gamma\gamma} < 2.5 \; GeV/c^2$: the $|\cos \theta^*|$ distribution exhibits a completely different trend where **pQCD** predictions **fail**