Baryon Antibaryon Pair Production in Two-Photon collisions at LEP

Bertrand Echenard

University of Geneva

Photon 2003, 7-11 April 2003

Outline:

Measure the cross section $\gamma \gamma \to H\overline{H}$ ($H = p, \Lambda, \Sigma^0$)

Scompare with three-quark predictions

Scompare with quark-diquark predictions

- (1) C. Berger, B. Lechner and W. Schweiger, Fizika B 8 (1999) 371;
 C. Berger and W. Schweiger, hep-ph/0212066.
- (2) G. Farrar et al., Nucl. Phys. B 259 (1985) 702.

Motivation bis

Also test the **handbag model**⁽¹⁾. In this model, the amplitude of the process $\gamma \gamma \rightarrow H\overline{H}$ is factorized into:

- \Rightarrow hard part: $\gamma\gamma \rightarrow q\overline{q}$ scattering.
- ⇒ soft part: $q\overline{q} \rightarrow H\overline{H}$ transition described by form factors (which represents moment of time-like generalized parton distribution).

In this framework:

- Solution ⇒ assume that (anti)quark carries almost the full momentum of (anti)baryon.
- $\Rightarrow use \gamma\gamma \rightarrow p\overline{p} \text{ measurement to fit the parameters of the model.}$
- \Rightarrow predictions for all other baryon octet members depend only on one parameter ρ , a ratio of form factors of the proton.
- (1) M. Diehl, P. Kroll and C. Vogt, hep-ph/0206288.

$e^+e^- \rightarrow e^+e^-p\overline{p}$

Typical event

- 2 tracks of opposite charge.
- Antiproton identification Neural networks, use P, dE/dx, Et/pt, shower shape.
- Proton identification dE/dx and Et/pt.
- \square Exclusive event no photons and $|\sum \vec{p}_t^2|$ cut.

Baryon Antibaryon Pair Production in Two-Photon collisions at LEP (page 4)

5

$e^+e^- \rightarrow e^+e^-\Lambda\overline{\Lambda}, \Sigma^0\overline{\Sigma}^0$ event selection

5

$\rightarrow e^+e^-\Lambda\overline{\Lambda}, \Sigma^0\overline{\Sigma}^0$

 e^+e^-

Typical event

- $\hfill\square$ Antiproton identification Et/pt .
- $\hfill\square$ Proton and pion identification dE/dx.
- $\hfill\square$ Exclusive event $|\sum p_t^2|$ cut.

Baryon Antibaryon Pair Production in Two-Photon collisions at LEP (page 5)

 $\gamma\gamma \rightarrow p\overline{p}$ results

989 events found (L = 667 pb⁻¹).
 W_{γγ} range : 2.0 < W_{γγ} < 4.5 GeV.
 Background level: between 4% and 69%.

 $\gamma\gamma \rightarrow p\overline{p}$ results

5

Striking disagreement with the quark-diquark predictions in the low $W_{\gamma\gamma}$ region !!

5

A single spherical harmonic is not sufficient to describe the data !!

[]

Baryon Antibaryon Pair Production in Two-Photon collisions at LEP (page 10)

Good fit with 92% Y_2^0 and 8% Y_0^0 (right). Good fit with all harmonics (left) OR

Baryon Antibaryon Pair Production in Two-Photon collisions at LEP (page 11)

Small angle a power law $\sigma \propto W^{-n}$ gives $n = 9.8 \pm 0.3$. Data are reproduced by the quark-diquark model, fit with

Large angle Clear change of shape at $W_{\gamma\gamma}\,\sim\,3$ GeV and the quarkdiquark model fails to reproduce the data.

 $\gamma\gamma \rightarrow \mathrm{p}\overline{\mathrm{p}}$ cross section

5

Estimated background < 1%.

□ Clean peak, 33 events selected.

 $\gamma\gamma \to \Lambda\overline{\Lambda}$ and $\gamma\gamma \to \Sigma^0\overline{\Sigma^0}$ results

 $\Lambda\overline{\Lambda}, \ \Lambda\overline{\Sigma}^0 + \overline{\Lambda}\Sigma^0 \ \text{and} \ \Sigma^0\overline{\Sigma}^0 \ \text{separation}$

 $\Lambda\overline{\Lambda}$, $\Lambda\overline{\Sigma}^0 + \overline{\Lambda}\Sigma^0$ and $\Sigma^0\overline{\Sigma}^0$ all mixed

Separate the three contributions

Procedure:

1. Classify events:

 $\begin{array}{ll} \Sigma^0 \overline{\Sigma}^0 & \text{ if a } \Sigma^0 \text{ and } \overline{\Sigma}^0 \text{ are found} \\ \Lambda \overline{\Sigma}^0 + \overline{\Lambda} \Sigma^0 & \text{ if a } \Sigma^0 \text{ or } \overline{\Sigma}^0 \text{ is found} \\ \Lambda \overline{\Lambda} & \text{ otherwise} \end{array}$

2. Use a maximum extended likelihood fit to find the fractions r_i of different channels.

3. Results:

$$\begin{split} \mathbf{r}_{\Lambda\overline{\Lambda}} &= 0.38 \pm 0.18 \quad (\mathbf{r}_{\Lambda\overline{\Sigma}^0 + \overline{\Lambda}\Sigma^0} = \mathbf{0}) \\ \mathbf{r}_{\Sigma^0\overline{\Sigma}^0} &= 0.62 \pm 0.18 \quad (\mathbf{r}_{\Lambda\overline{\Sigma}^0 + \overline{\Lambda}\Sigma^0} = \mathbf{0}) \\ \mathbf{r}_{\Lambda\overline{\Sigma}^0 + \overline{\Lambda}\Sigma^0} & \text{compatible with 0} \\ &< 0.58 \text{ at 95\% CL} \end{split}$$

- Limited statistics.
- Disagreement with CLEO at low $W_{\gamma\gamma}$.
- Three quark model excluded.
- Diquark predictions compatible with $\sigma(\Lambda \overline{\Sigma}^0 + \overline{\Lambda} \Sigma^0)$
 - predictions for $\Lambda\overline{\Lambda}$ and $\Sigma^0\overline{\Sigma^0}.$
- Good agreement with diquark

7-11 April 2003

Baryon Antibaryon Pair Production in Two-Photon collisions at LEP (page 14)

5

- \square Predictions for the range $0.25 < \rho < 0.75$.
- \Box Good agreement with $\Lambda\overline{\Lambda}$ and $\Sigma^0\overline{\Sigma}^0$.
- \Box Handbag predictions compatible with $\sigma(\Lambda \overline{\Sigma}^0 + \overline{\Lambda} \Sigma^0)$

7-11 April 2003

Baryon Antibaryon Pair Production in Two-Photon collisions at LEP (page 15)

$$\Delta^{++}\Delta^{--}$$
 channel

Can we measure the $\gamma\gamma \rightarrow \Delta^{++}\Delta^{--}$ cross section ?

➡ With the naive three quark picture:

$$\sigma(\gamma\gamma \to \Delta^{++}\Delta^{--}) = 16 \cdot \sigma(\gamma\gamma \to p\overline{p})$$

BUT upper limit measurement¹ excludes this model: $\sigma(\gamma\gamma \rightarrow \Delta^{++}\Delta^{--})/\sigma(\gamma\gamma \rightarrow p\overline{p}) = 1$ at 95% CL for 2.6 GeV $< W_{\gamma\gamma} < 2.8$ GeV.

 \Rightarrow With the diquark model, calculations have not been done yet, but a rough estimation¹ gives for $W_{\gamma\gamma} \simeq 2.8$ GeV:

$$\sigma(\gamma\gamma \to \Delta^{++}\Delta^{--}) \simeq 0.1 \cdot \sigma(\gamma\gamma \to p\overline{p})$$

Interesting challenge and can provide information to improve models

(1) ARGUS, H. Albrecht *et al.*, Z. Phys. C 42 (1989) 543.
 (2) M. Anselmino *et al.*, Int. J. Mod. Phys. A 4 (1989) 5213.

7-11 April 2003

Event Selection

Decays: $\Delta^{++} \rightarrow p\pi^+ \quad \Delta^{--} \rightarrow \overline{p}\pi^-$

Selection:

- □ 4 tracks from interaction point.
- Proton (antiproton) is identified as the positive (negative) track with the largest momentum.

At this point:

Configuration correctly identified: 98.5% Main background: $\gamma \gamma \rightarrow \pi^+ \pi^- \pi^+ \pi^-$.

Antiproton identification:

 $\frac{dE}{dx} : \frac{CL(p)}{(CL(p) + CL(K) + CL(\pi))} > 0.95$ \overline{p} annihilation in calorimeter : $\frac{Et}{pt} > 0.8$

Finally, apply cut to select exclusive events :

No photons and $|\sum p_t^2| < 0.02 \text{ GeV}^2$.

Data Results

 $\int \mathcal{L} dt = 667 \text{ pb}^{-1}$

369 events selected

Seems there is something...

$\sim 100\%$ pp $\pi^+\pi^-$

In data:

 $\Box \quad \gamma\gamma \to \Delta^{++}\Delta^{--}$ $\Box \quad \gamma\gamma \to \Delta^0 \overline{\Delta}^0$ $\Box \quad \gamma\gamma \to p \overline{p} \pi^+ \pi^- \text{ non resonant}$

Next step:

⇒ Separate the three contributions and extract cross sections $\sigma(\gamma\gamma \rightarrow \Delta^{++}\Delta^{--})$ and $\sigma(\gamma\gamma \rightarrow \Delta^{0}\overline{\Delta}^{0})$.

Baryon Antibaryon Pair Production in Two-Photon collisions at LEP (page 19)

Summary

$\gamma\gamma \rightarrow \mathbf{p}\overline{\mathbf{p}}$:

- Striking disagreement with the three quark model.
- Data globally described by the diquark model.
- ⇒ Differential cross section is not reproduced by the diquark model at low $W_{\gamma\gamma}$.
- ⇒ Large angle and small angle cross sections have different $W_{\gamma\gamma}$ dependence.

$$\gamma\gamma \to \Lambda\overline{\Lambda}, \ \gamma\gamma \to \Lambda\overline{\Sigma}^{\mathbf{0}} + \Sigma^{\mathbf{0}}\overline{\Lambda} \text{ and } \gamma\gamma \to \Sigma^{\mathbf{0}}\overline{\Sigma}^{\mathbf{0}}$$
:

- Striking disagreement with the three quark model.
- Good agreement with the diquark predictions.
- Good agreement with the handbag calculations.

 $\gamma\gamma \rightarrow \Delta^{++}\Delta^{--}$:

➡ Ongoing analysis with promising results.

Systematic uncertainties

Background

$W_{\gamma\gamma}$	Selection	Back-	Other	Total	
(GeV)	cuts (%)	(%)	ground(%)	(%)	
2.1 - 2.2	7.3	1.0	7	10.3	
2.2 - 2.3	7.3	1.3	6	9.5	
2.3 - 2.4	7.3	1.7	6	9.6	
2.4 - 2.5	7.3	2.4	6	9.7	
2.5 - 2.6	7.3	3.8	6	10.2	
2.6 - 2.8	14.3	5.8	6	16.5	
2.8 - 3.1	30.5	12.4	6	33.5	
3.1 - 3.6	30.5	12.8	6	33.7	
3.6 - 4.5	30.5	15.0	6	34.5	

3.6 - 4.5	3.2 - 3.6	2.8 - 3.2	2.6 - 2.8	2.5 - 2.6	2.4 - 2.5	2.3 - 2.4	2.2 - 2.3	2.1 - 2.2	(GeV)	$W_{\gamma\gamma}$
6.3	4.2	2.6	1.1	0.6	0.4	0.4	0.4	0.3	(%)	inclusive
25.5	23.9	29.3	17.5	11.9	8.1	5.8	4.2	3.4	(%)	$ \eta_{+}$ η_{-}
25.1	20.8	17.2	4.6	2.8	0.4	0	0	0	(%)	e+e-

Background subtraction:

- \checkmark uncertainty of 50% on $\gamma\gamma \rightarrow \pi^+\pi^-$ and $\gamma\gamma \rightarrow K^+K^-$ cross sections.
- \checkmark uncertainty of 30% on the $e^+e^- \rightarrow e^+e^-e^+e^-$ cross section due to MC statistic.
- ➡ 50% on the inclusive background due to the fitting procedure.

7-11 April 2003

Baryon Antibaryon Pair Production in Two-Photon collisions at LEP (page 21)

 $\gamma\gamma \to \Lambda\overline{\Lambda}$ and $\gamma\gamma \to \Sigma^0\overline{\Sigma}^0$ results

➡ Fit to determine the ∑⁰ contamination.
➡ Assume $\sigma(\Lambda \overline{\Sigma}^0 + \overline{\Lambda} \Sigma^0) \simeq \sigma(\Sigma^0 \overline{\Sigma}^0).$ ➡ 22% (∑⁰/\overline{\Sigma}^0) contamination