Exclusive Production of Meson Pairs in Two Photon Physics

Update of preliminary result shown at Photon 2001.

Now includes all LEP data and systematic errors.

- Theoretical overview
- Selection
- Monte Carlos
- Backgrounds
- Trigger efficiency
- Cross section calculation
- Systematic errors
- Results
- More Theory
- Conclusions

Theoretical Overview

$$M = \int_{0}^{1} dx \int_{0}^{1} dy \Phi_{M}^{*}(x, p_{t}) T_{H}(x, y, p_{t}) \Phi_{M}(y, p_{t})$$

 T_H is the hard scattering amplitude (short range, calculable) Φ_M is the Meson wave function - long range - parameterized by sum rules or lattice calculations This is the 1081 Brodsky Lengge (bard scattering) prediction

This is the 1981 Brodsky Lepage 'hard scattering' prediction Recently some theorists proposed a soft physics explanation is required

TPC_Two-Gamma

CLEO

FIG. 5. Measured cross section for the two-photon production of charged pion and kaon pairs as a function of $W_{\pi\pi}$ in the angular region $|\cos\theta^*| < 0.6$. Only statistical errors are shown. The leading order QCD predictions by Brodsky and Lepage, and Benayoun and Chernyak, are shown by the solid and dashed curves respectively.

ALEPH $\gamma \gamma \rightarrow \pi^+ \pi^- K^+ K^-$ Analysis Summary

- Use (almost) all ALEPH data (LEP I and LEP II)
- Select untagged events with just two (oppositely) charged tracks
- Use dE/dx to identify K or π pairs.
- Use calorimeter and muon chamber information to remove muon pair background
- Subtract remaining backgrounds
- Calculate selection and trigger efficiencies
- Calculate Systematic errors
- Calculate cross section versus W and $\cos \theta^*$
- Combine results of each year of LEP data taking

datasets

Year	\sqrt{s}	Luminosity Analysed nb^{-1}
1992	91.25	22800.2227
1993	91.27	33156.1211
1994	91.25	47345.4648
1995	91.30	34270.75
1997	177.81	59147.9531
1998	189.00	177073.797
1999	198.00	241607.172
2000	205.89	222109.203

Basic Selection (1)

- Triggered by the Aleph 'back to back' trigger TRK_CNT2
 - requires two charged tracks approximately back to back.
- 2 oppositely charged tracks.
- Invariant mass of pair must be between 2.0 and 40.0 GeV.
- p_t of the pair to be less than 0.1 GeV
- Require a vertex within 8cm in Z and 3cm in R of IP.
- Add up energy in all neutral objects, except those close to charged tracks. (Close defined as cosine < 0.95) Require this energy to be no more than 100 MeV

Basic Selection (2)

- Use dE/dx to give probability of each track to be pion, kaon or proton.
- Take the product of these numbers to find the probability of both tracks being pion, kaon or proton.
- For X pair selection, require product X to be greater than 0.05, product for other two both less than 0.05.(X is pion or kaon.)
- For Kaon pairs, recalculate W using Kaon masses for particles.
- At least one track must have its expected ionisation for a pion more than 0.14 different from the corresponding value for a kaon.
- $\cos \theta^*$, the angle of the tracks relative to the beam in their centre of mass, must be less than 0.6.

Signal Monte Carlo

- Weight Vermasseren QED program for $\gamma\gamma \rightarrow$ lepton lepton
- Brodsky and Lepage stated:

$$\frac{d\sigma}{d\cos\theta^*}(\gamma\gamma \to M^+M^-) \sim \frac{4|F_M(W^2)|^2}{1-\cos^4\theta^*}d\cos\theta^*(\gamma\gamma \to \mu^+\mu^-)$$

where $F_M(W^2) \sim 1/W^2$

- $1/(1 \cos^4 \theta^*) \sim 1.0$ for $0.0 < \cos \theta < 0.6$ so just applied the W weighting.
- Also generated sets with $1/\sin^4\theta$ and $1/\sin^6\theta$ weighting.
- Used $1/\sin^4\theta$ set for measurement as it best described data.
- Other two used for systematics.

MC Weighting

Backgrounds

The following backgrounds sources were considered:

- $\gamma\gamma \rightarrow$ hadrons
 - Nonexclusive production used PHOJET MC
 - Misidentified Exclusive production used Signal MC, weighted to the data (iterate analysis till stable)
- $\gamma\gamma \rightarrow \mu^+\mu^-$ Used Behrends Darveveldt and Kleiss MC
- $\gamma\gamma \rightarrow \tau^+\tau^-$ Used Vermasseren MC

No background from $p\bar{p}$ or $\tau^+\tau^-$

Special cuts following Background checks

For pion pairs, where there is a large muon contamination:

- p_t of the pair to be less than 0.05
- Tracks to have an angle in ϕ of greater than 3.132 radians.
- Tighter anti-muon cuts in ECAL and HCAL

Trigger efficiency

Measured using e^+e^- pairs triggered independently by ECAL. Parameterized this year on year and applied correction to data.

$d\sigma/\cos\theta^*$ Cross section

$$d\sigma/d\cos\theta^* = \frac{N_{data} - N_{back}}{\epsilon \times L \times L_{\gamma\gamma} \times \delta\cos\theta^*}$$

- $L_{\gamma\gamma}$ is the luminosity function $dL_{\gamma\gamma}/dW_{\gamma\gamma}$ integrated over the range $2 < W_{\gamma\gamma} < 6$
- $\delta \cos \theta^*$ is the bin width.
- ϵ is the selection efficiency
- L is the integrated luminosity

Luminosity function converts a cross section for a process $e^+e^- \rightarrow e^+e^-X$ to a cross section for the process $\gamma\gamma \rightarrow X$. Calculated using 'GALUGA'.

σ versus W

$$\sigma = rac{(N_{data} - N_{back})}{\epsilon imes L imes \delta W_{\gamma\gamma} imes dL_{\gamma\gamma}/dW_{\gamma\gamma}}$$

- $dL_{\gamma\gamma}/dW_{\gamma\gamma}$ is the luminosity function
- $\delta W_{\gamma\gamma}$ is the bin width.
- $\delta \cos \theta^*$ is the bin width.
- ϵ is the selection efficiency
- *L* is the integrated luminosity

Systematic Errors

- Detector Simulation: Vary Monte Carlo and recalculate result.
 -dE/dx : ±10% resolution
 - -Charged track momentum : $\pm 10\%$ resolution -noise etc. : total energy ± 50 MeV.

Error = half the difference between the largest and smallest value seen in a given bin as a result of these changes.

• Model:

Signal MC with steeper / flatter dependance on $\cos \theta^*$ (consistent with data) Error = Half difference in efficiency in bin.

• Monte Carlo statistics

 $\gamma\gamma \to \pi^+\pi^-$

 $\gamma\gamma \to K^+K^-$

A.Finch - Photon 2003

What is the QCD Leading Order Prediction?

Following private communication from Markus Diehl, Peter Kroll, Carsten Vogt

substituted

 $sF_{\pi}(s) \approx 0.4 GeV^2...$

(from original 1981 Brodsky Lepage paper)

with

 $sF_{\pi}(s) = 8\pi f_{\pi}^2 * \alpha_s = \alpha_s * 0.43 GeV^2.$

and vary α_s between 0.3 and 0.6.

A.Finch - Photon 2003

ALEPH $\gamma \gamma \rightarrow \pi^+ \pi^- K^+ K^-$ Conclusion

• $\gamma\gamma \rightarrow \frac{\pi^{+}\pi^{-}}{K^{+}K^{-}}$ has been measured at higher masses than $K^{+}K^{-}$ previously achieved.

- The shapes of the distributions in $d\sigma/d\cos\theta^*$ and $W_{\gamma\gamma}$ are in good agreement with QCD predictions.
- The normalisation of the observed signals disagrees with these predictions.
- $d\sigma/dW_{\gamma\gamma}$ fitted by A/W⁶ where

200 ± 40 nb(GeV/c²)⁶ ($\chi^2 = 1.9$ for 7 d.o.f.) pions 220 ± 50 nb(GeV/c²)⁶ ($\chi^2 = 1.5$ for 4 d.o.f.) kaons