VIRTUAL PHOTON STRUCTURE AT HERA.

P J BUSSEY

UNIVERSITY of GLASGOW

CONTENTS

- (1) Introduction
- (2) Types of photon process
- (3) New results
- (4) Conclusions

THE HERA COLLIDER

 $Q^2 \approx 0$ — photoproduction γp $Q^2 = O(1 \text{ GeV}^2)$ — 'Low Q^2 ' transition region $Q^2 \gg 1 \text{ GeV}^2$ — Deep Inelastic Scattering (DIS) Wish to study photon structure over these regions

with special regard to transition region and DIS.

DIS AT HERA

A typical DIS event

At lowest order (quark parton model) the virtual photon ejects a single quark from the proton: \rightarrow one jet

No equivalent in photoproduction ($Q^2pprox 0$)

Can tag with e' for $Q^2 \gtrsim 0.2$ GeV² using low-angle 'beam-pipe' + rear calorimeters \rightarrow measure dijet events through transition region from photoproduction.

Use tag to reconstruct γ^*p c.m. frame.

TYPES OF PHOTON COUPLING

These couplings can in principle be studied at all $\ Q^2$.

 \rightarrow sensitivity to photon structure

Examples of dijet processes.

Direct / resolved fully distinct only at LO.

Aim: to study effective structure of virtual photon as function of Q^2 , with special reference to 'transition region' $Q^2 = O(1)$ GeV ²

In perturbative QCD, assuming factorisation (OK at NLO):

$$egin{aligned} d\sigma_{ep o e+2 ext{jets}} &= \ & \Sigma_{a,b} \int_{0}^{1} dy \, f_{\gamma^{*}/e}(y,Q^{2}) \int_{0}^{1} dx_{\gamma^{*}} f_{a/\gamma^{*}}(x_{\gamma^{*}},Q^{2},\mu_{F\gamma^{*}}^{2}) \ & imes \int_{0}^{1} dx_{p} \, f_{b/p}(x_{p},\mu_{Fp}^{2}) \, d\sigma_{ab o 2 ext{jets}}(\mu_{R}) \end{aligned}$$

where there are two contributions to the $\gamma *$ PDFs:

$$f_{a/\gamma^*} = f^{
m had}_{a/\gamma^*} + f^{
m pert}_{a/\gamma^*}$$

Boundary is factorisation-scale (μ_F) dependent.

DISASTER++ (D. Graudenz) used as NLO parton-level Monte Carlo.

PYTHIA and **ARIADNE** used to convert data and NLO partons to the hadron level.

Dijet events identified in γ^*p c.m. frame $E_T^1,~E_T^2>7.5,~6.5~$ GeV, $-3<\eta<0$

A measure of the fraction of the photon energy given to the dijet final state is:

$$x_{\gamma}^{
m obs} < 0.75$$
 Resolved-dominated $x_{\gamma}^{
m obs} > 0.75$ Direct-dominated

The ratio

$$R=rac{d\sigma}{dQ^2}(x_{\gamma}^{
m \ obs}<0.75)/rac{d\sigma}{dQ^2}(x_{\gamma}^{
m \ obs}>0.75)$$

is a measure of the resolved fraction of the virtual photon events within the acceptance. Various experimental and theoretical uncertainties cancel in $\ R$.

Using QCD renormalisation scale $\mu_R^2 = Q^2 + E_T^2$:

- Data tend to lie above DISASTER NLO
- But good agreement with $x_{\gamma}^{
 m obs} > 0.75$ component
- Discrepancy mainly with the $x_{\gamma}^{\text{obs}} < 0.75$ component DISASTER contains only perturbative processes, no hadronic component to photon.

Comparison with NLO is not strongly E_T^{jet} dependent. Note presence of two hard QCD scales, Q^2 and E_T^{jet} . More natural to use $\mu_R^2 = Q^2 + E_T^2$. Using $\mu_R^2 = Q^2$ raises the prediction. Is this a better procedure?

At low Q^2 , big sensitivity to μ_R^2 At high Q^2 , low sensitivity; data tend to be above theory in both cases. So decreasing μ_R^2 is not a successful solution.

 \rightarrow all resolved effects fall with Q^2 and E_T^{jet} (R at $Q^2 \approx 0$ estimated similar to $Q^2 \approx 0.3$) Comparison with DISASTER NLO ($\mu_R^2 = Q^2 + E_T^2$) is insensitive to either hard scale. Data lie above theory. \rightarrow consistent need for higher-order resolved contribn. (hadronic!) to photon even at high Q^2 **Compare with prelim. ZEUS data with identified charm (D meson) required in event.**

Jet selections similar to present analysis.

Presence of c quark forces hard scale on process. Flat in Q^2

Should all be perturbatively calculable.

CONCLUSIONS

— Have measured dijet cross sections in ZEUS over a range of Q^2 values crossing the transition between photoproduction and DIS.

— There is a component to the cross sections which is not modelled in NLO QCD, and is associated with resolved processes.

— Decreasing the renormalisation scale does not satisfactorily account for the discrepancy.

— Suggests presence of a hadronic part of the photon even at high Q^2 values.

— The effect appears absent in dijets with heavy quarks

— Need a NLO MC which includes general photon PDFs to test these ideas further.