Diffraction in ep collisions

Anna Mastroberardino Calabria University

International Conference on the Structure and Interactions of the Photon *Frascati (Italy)*, 7–11 April 2003

on behalf of

- Introduction
- Diffractive structure functions
- t distribution
- Φ distribution
- Summary

Diffraction at HERA

At HERA about 10% of the events are diffractive: photon dissociates into hadrons via colourless exchange, leading to a Large Rapidity Gap

Traditionally such events described in terms of "Pomeron" exchange in hadronhadron interactions (Regge Theory)

Fast forward (leading) proton

Diffraction is a sizeable fraction of total hadron-hadron cross section

Can we understand in terms of pQCD?

Large rapidity gap (LRG)

Anna Mastroberardino

7th April 2003

The partonic pomeron

Diffractive DIS viewed as $\gamma^* IP$ inelastic scattering

the pomeron carries fraction x_{IP} of the initial proton momentum

the struck parton carries fraction β of the Pomeron momentum

HERA is an ideal laboratory to study diffraction

ep interaction $\Rightarrow \gamma^* p$ interaction γ^* probes QCD structure of Pomeron with varying resolution determine diffractive parton densities (dPDFs) investigate universality of dPDFs

Regge theory

Pomeron as a "trajectory"

 $\alpha_{IP}(t) = \alpha_{IP}(0) + \alpha'_{IP} \cdot t \qquad \alpha_{IP}(0) \simeq 1.086$

pomeron intercept $\alpha_{IP}(0)$ controls energy dependence of total cross sections $\rightarrow \sigma_{tot} \sim s^{\alpha_{IP}(0)-1}$

butno known hadronic bound stateslying on this trajectory

DDIS allows to probe the partonic structure of pomeron

Hard Diffraction in QCD

Regge factorization (IP with partonic structure)

$$F_2^{D(4)} = f_{IP/p}(x_{IP}, t) \cdot F_2^{IP}(Q^2, \beta)$$

 $F_2^{I\!\!P}(\beta,Q^2)$ evolves following DGLAP equations

Diffractive structure function and the "universal" IP

7th April 2003

t-distribution from leading proton data

Exponential fit to t distribution

 $\frac{d\sigma}{d|t|} \sim e^{-b|t|}$

b is related to interaction radius:

 $b=R^2/4$

According to Regge phenomenology proton size "grows" with energy

$$b = b_0 + 2\alpha' \ln \frac{W^2}{M_X^2} \approx b_0 + 2\alpha' \ln \frac{1}{x_{IP}}$$

For $x_{IP} < 10^{-2}$ data prevent any firm conclusion

Azimuthal asymmetry from leading proton data

More statistics needed to explore the high β region (large asymmetry expected)

Anna Mastroberardino

7th April 2003

Reduced diffractive cross section

NLO QCD fit: the gluon density

— H1 2002 σ.º LO QCD Fit

Regge factorization (c.f. data)

parameterized at $Q_0^2 = 3 \ {
m GeV}^2$

get PDFs:

Extending to large fractional momenta z Gluon dominated

Momentum fraction of diffractive exchange carried by gluons:

75 ± 15 %

Singlet Σ and gluon g

NLO DGLAP evolution

Assume:

Diffractive final states: a test of QCD factorization

Use diffractive PDFs to predict cross sections for diffractive production of charm and dijet

<u>At HERA:</u> Shapes of distributions well reproduced by dPDFs description

Normalization ~ ok within uncertainties

Consistent with QCD factorization

At the Tevatron:Serious breakdown of
factorization between ep and
pp data due to additional
spectator interactions

Summary

Measurements of inclusive diffraction at HERA

- used to test QCD factorization
 - dijet and charm cross sections at HERA are found to be approx. consistent
 - a discrepancy ~ one order of magnitude observed in the predictions of dijet cross sections from the Tevatron
- support Regge factorization
- can be described within a consistent picture using
 - NLO DGLAP evolution
 - gluon dominated diffractive PDFs

analyzed for the first time in terms of azimuthal asymmetry indicate interference between L and T photons small at low β

Dynamics of diffractive exchange understandable in the frame of pQCD