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There is a single FF for each v* — ~P transition to be de
fined by

(P(p)y(K)[J;™[0) = €uapp” ek Fap(q®) (1)
JoM = 2/3ury,u — 1/3dy,d — 1/357,s
€™ the polarization vector of ~
q° squared momentum to be transferred by +*
€wap appears as only the pseudoscalar meson belongs to the
abnormal spin-parity series.
A straightforward calculation of F,p(Q?) in QCD is
not possible!

Brodsky, Lepage [Phys. Rev.D24 (1981)1808] employed PQCD

to find the asymptotic behaviour

limge Q" F,p(Q%) = 2fp (2)
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where fp is the meson weak decay constant and Q?’=—¢* =
The behaviour of F,p(Q?) for @* — 0 can be determined
from the axial anomaly in the chiral limit of QCD
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limz o QFyp(@) = a7

= F,p(0) (3)

In order to describe the soft nonperturbative region of Q2
a simple interpolation formula has been proposed by Brodsky,
Lepage

1 1 1 . 87T2f]%
inlfp 1+ (QY/8r2ff)  Axifp (872f3 + Q)
(4)

VP(Q2)

which however

does not describe even the space-like data well.
Then: in space like region in ¢ < 0, one usually fits the

observed ¢ = ¢°=—@Q* dependence of F,p(t) by a normalized

phenomenological formula

1
(1—t/Ap)’

where 1/Ap=(r%)/6 is related to the size (r%) of the pseu-

E,p(t) = F(Ap,t)/F(Ap,0) = (5)

doscalar meson P.



And in the time-like region ¢ > 0 of the well known reso-

nances one is left with Breit-Wigner extension of the VMD model
fvP m%

Fp(@) =2 = (6)

v fo m,l% - t - imqufU

which, however, is justified only at the region of resonances and
generally violates the unitarity.

Recently [Phys.Rev.D57 No.1 (1998) 33] plenty of F,p data at
large momentum transfer appeared and on an account of that it
is necessary to achieve a description of all existing data in both,
t <0andt > 0, regions in the framework of one more sophisti-

cated approach.

Recently [Phys. rev. D57 No. 1 (1998) 33| plenty of F,p

data at large momentum transfer appeared:
e for 7 : experimental data —33 points
e for n : experimental data —52 points
e for n' : experimental data — 59 points

e in time-like region ® peak for 7, n



there is necessary ti achieve a description of all existing data in
both, ¢ < 0 and £ > 0, regions in the framework of one more
sophisticated approach.

Our intention is:

e To achieve a description of all t < 0, ¢ > 0 data by one an-
alytic function from —oco — 400, respecting all ‘known

properties of F.p(t) in the framework of the unitary and

analytic model (U& A)

I. Summary of the properties of F. p(t)

e asymptotic behaviour:  F,p(t)t—00 = 2@% ~ !

o T'(P
e normalization: va(()):ém%fp = mip (W;;w

However, in order to take into account the fact that f, and
[,y are not directly measurable quantities, employing the relation

for the two-photon partial width
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of the pseudoscalar meson P, one comes to a redefinition of

the norm

Fv (O):

2 \lF(P — ¥7Y) )

amp mw™mp

analytic properties:

The F,p(t) is analytic in the whole complex ¢-plane besides
the cut on the positive real axis from ¢ = mfro up to 400, as
there is the intermediate state 'y allowed, which generates the

lowest branch point at the corresponding FF's.

Construction of U&A model of F,p(t)

Because F,p(t) has the asymptotic behaviour like VMD, then
in the VMD parametrization of F,p(t), besides p, w, ¢, another
isoscalar vector-meson can be taken into account in order to
achieve the normalization automatically. We consider it to be

'

W .

Then one obtains

2
Polt) = £ 5 (forl 1)) )

where f7 is the universal vector-meson coupling constant of the
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~v* — V transition and numerically given by
the leptonic decay width I'(V — []7) of the correspond-
ing vector meson.

Requirement of the normalization (8) leads to

Fop(0)= X (fir/f5) (10)

i=p,w,p,w’

If we express (f,/,p/f5) through other coupling constant ra-
tios one obtains the suitable for a construction of U& A model

VMD parametrization

m:. m:,
F.p(t) = 0 v+ £ — Y —la,+ 11
() = (o) [mg_t ] R
2 2 2 2
m m; m m;
+ wo w a,. + o w a
m2—t mi—t| " {mg—t m2, —t|"°

to be automatically normalized. In order to obtain from (11)
the U& A model, we incorporate a two-cut approximation of the
correct F'F' analytic properties by an application of the non-linear

transformation
[1/V = V]?

and subsequently non-zero values of vector-meson widths

t =ty —

(12)

[' # 0 are incorporated.



As a result all VMD terms first give the factorization form

m?  (1=V?)’
(m?—t)(l—ﬁ) ' (13)
(Ve = Vi) (Vi + Vi) Vo = Vi)V + Vi)
V V)V A Vi)V — V)V 1 1jVy) - o

1-V2
2
1-VZ

a) on the pure asymptotic term ( )%, independent on the
flavour of vector mesons under consideration and carrying
just the asymptotic behaviour ;. ~ t~1 of the VMD

model

b) and the so-called finite-energy term (the second one in (13)),
describing the resonant structure of VMD terms, which,
however, for |t| — oo are going out on the real constants

and so, they do not contribute to the asymptotic behaviour

of the VMD model.

The subindex 0 in (13) means that still I' = 0 of all vector mesons

1s considered.



Note:

The following change of the exponent in the asymptotic term

1 _ 2\ 2 1 — 2\ 2n
( V)—>( V) n=1,23.. (14)

1— V32 1 - V32

leads to the change of the asymptotic behaviour
oo ~ LT o £ (15)

of the corresponding FF.
One can utilize in (13) relations between complex conjugated
values of the corresponding zero-width VMD model pole posi-

tions in V-plane
Vig ==V, fori=p,w,¢and Vy =1/V; (16)

following from the assumption that in a fitting procedure of data,

on F,p(t) such ¢;, will be found that
(m? —T7/4) < tin, i =p,w,¢ and(m?, —T2,/4) > t;,. (17)
Finally incorporating I # 0 by a substitution

m? — (m,, —il',/2)* (18)



one comes to the U& A model of F,p(t)

1_V2)2- (19)

PVl = (v

13 (0) (VN - VW')(VN - V:’)(‘/N + Vw')(VN + V;’)

W SV = VIV V)V + V)

N {(VN—Vp)(VN—Vp*)(VN— L/V) (Vv =1/Vp)
(V=V)(V=V)V =1/V,)(V =1/V)

(VN—Vw)(VN—Vj)(VN+Vw/)(VN+VJ)}
VAV = V)V + VvV + V) [

w'

(v
VN—Vw (Vv = V)
{(

Vn = 1/Vo)(Vy = 1/V])

i V)V = 1)V

w(
(V=Vo)(V =V)(V
V Vw)(VN—Vw)

V) (V = V)

(VN + Vw/)<VN + VJ/) } .
DV V)V + V) o
N {VN_V¢ )V = V) (Vv = 1/Vy)(Vy = 1/V))
V=Vo)(V=Vi(V =1/Ve)(V —1/V])
(VN—VW (VN— )(VN+V )(VN—FVJ)}G
(V =V )V =V (V*x+V)(V+VH)

where
V(t) :Z.\/m— Qin — ¢
Vain T4+ Vain — q
g ={(t —to)/to}""; qin = {(tin — to) /to}""*;

VN = V(t)

o and V; (1=p, w, ¢, w') are positions of vector-

meson poles in V-plane.



Now, (19) is applied for a description on existing data on 7,
n, n’ transition form factors.
7: The best description (see Fig 1) is achieved with y =18.5
ie. x/ndf =0.66
and following values of parameters :
t? = 0.5909GeV?; t5 = 0.9714GeV?
(f py0/ frio)=0.0045 % 0.0009
(fyn0/ fomega)=0.025 = 0.0009

(fy20/ foni)=—0.0004 % 0.0001

n: The best description (see Fig 2) is achieved with x =76.7.5
ie. x/ndf =1.63
and following values of parameters :
tv =2.0712GeV?; t5 =1.0091GeV?
(f 20/ frho)=—-0077 £ 0.0106
(fyn0/ Fomega)=0.0542 £ 0.0113
(f 0/ foni)=—0.00035 % 0.0004
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n': The best description (see Fig 3) is achieved with x =76.5
ie. x/ndf =1.40
and following values of parameters :
tv = 1.8860GeV?; t5 = 0.6089GeV?
(f 0/ Frno)=—-2211 % 0.0190
(furz0/ Formega)=0.3599 + 0.0289
(f 50/ foni)=—.0583 £ 0.0485
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Conclusion

e We have predicted behaviour of the transition pseudoscalar-
meson form factors in the space-like and time-like regions

simultaneously

e The U&A model of pseudoscalar-meson transition form fac-

tors posses all known form factor properties

e The obtained results can be applied to:
i) prediction of various cross-sections and decay rates in
which transition form factors are appearing
ii) for the first time one can evaluate contributions of o(eTe™ —
v P) into the muon anomalous magnetic moment
iii) we are able to predict the strange pseudoscalar transition

form factors
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Figure 1: 7° transition form factor
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Figure 2: n transition form factor
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Figure 3: eta’ transition form factor
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