Measurement of $\gamma\gamma$, γe luminosities and polarizations at photon colliders

+ general remarks on photon colliders

Valery Telnov

Budker INP, Novosibirsk

(with A.Pak, D.Pavluchenko, S.Petrosyan, V. Serbo)

PHOTON2003, Frascati, April 7-11, 2003

General features of luminosity distributions:

1. Broad

2. Can not be described by some equivalent photon spectra (because the photon energy depends on the scattering angle)

3. Photon have various polarizations

For $\gamma\gamma$ collisions

$$d\sigma_{\gamma\gamma \to X} = \sum_{i,j=0}^{3} \xi_i \tilde{\xi_j} d\sigma_{ij},$$

where ξ_i are Stokes parameters, ξ_2 - the circular polarization, $l = \sqrt{\xi_1^2 + \xi_3^2}$ - the linear polarization, $\xi_0 \equiv 1$.

$$d\dot{N}_{\gamma\gamma \to X} = dL_{\gamma\gamma} \sum_{i,j=0}^{3} \langle \xi_i \tilde{\xi}_j \rangle \sigma_{ij}$$

So, in general case, one has to to measure $\frac{d^2L_{ij}}{d\omega_1 d\omega_2} - 16$ two-dimensional distributions !

However, after averaging over final spin states and azimuthal angles only 3 from 16 σ_{ij} do not vanish

$$\sigma \equiv \sigma_{00} = \frac{1}{2}(\sigma_{\parallel} + \sigma_{\perp}) = \frac{1}{2}(\sigma_{0} + \sigma_{2})$$
$$\tau^{c} \equiv \sigma_{22} = \frac{1}{2}(\sigma_{0} - \sigma_{2})$$
$$\tau^{l} \equiv \frac{1}{2}(\sigma_{33} - \sigma_{11}) = \frac{1}{2}(\sigma_{\parallel} - \sigma_{\perp})$$

 $d\dot{N}_{\gamma\gamma \to X} = dL_{\gamma\gamma} (d\sigma + \langle \xi_2 \tilde{\xi_2} \rangle d\tau^c + \langle \xi_3 \tilde{\xi_3} - \xi_1 \tilde{\xi_1} \rangle d\tau^l)$

Substituting $\xi_2 \equiv \lambda_{\gamma}$, $\tilde{\xi_2} \equiv \tilde{\lambda}_{\gamma}$, $\xi_1 \equiv l_{\gamma} \sin 2\gamma$, $\tilde{\xi_1} \equiv -\tilde{l}_{\gamma} \sin 2\tilde{\gamma}$, $\xi_3 \equiv l_{\gamma} \cos 2\gamma$, $\tilde{\xi_3} \equiv \tilde{l}_{\gamma} \cos 2\tilde{\gamma}$ and $\Delta \phi = \gamma - \tilde{\gamma}$ (azimuthal angles for linear polarizations are defined relative to one x axis), we get

$$d\dot{N} = dL_{\gamma\gamma}(d\sigma^{np} + \lambda_{\gamma}\tilde{\lambda}_{\gamma} d\tau^{c} + l_{\gamma}\tilde{l}_{\gamma}\cos 2\Delta\phi d\tau^{l})$$

$$\equiv dL_{\gamma\gamma} d\sigma^{np} + (dL_{0} - dL_{2})d\tau^{c} + (dL_{\parallel} - dL_{\perp}) d\tau^{l}$$

$$\equiv dL_{0}d\sigma_{0} + dL_{2}d\sigma_{2} + (dL_{\parallel} - dL_{\perp}) d\tau^{l}$$

$$\equiv dL_{\parallel} d\sigma_{\parallel} + dL_{\perp} d\sigma_{\perp} + (dL_{0} - dL_{2}) d\tau^{c}$$

where

$$dL_{0} = dL_{\gamma}(1 + \lambda_{\gamma}\tilde{\lambda}_{\gamma})/2$$
$$dL_{2} = dL_{\gamma}(1 - \lambda_{\gamma}\tilde{\lambda}_{\gamma})/2$$
$$dL_{\parallel} = dL_{\gamma}(1 + l_{\gamma}\tilde{l}_{\gamma}\cos 2\Delta\phi)/2$$
$$dL_{\perp} = dL_{\gamma}(1 - l_{\gamma}\tilde{l}_{\gamma}\cos 2\Delta\phi)/2$$

So, one should measure (not only in a general case) $dL\gamma\gamma$, $\langle\lambda\gamma\tilde{\lambda}\gamma\rangle$, $\langle l\gamma\tilde{l}\gamma\rangle$

or alternatively $dL_0, dL_2, dL_{\parallel}, dL_{\perp}$.

If both photon beams have no linear polarization or no circular polarization, the luminosity can be decomposed in two parts: L_0 and L_2 , or L_{\parallel} and L_{\perp} , respectively.

Important example is the Higgs production

$$\sigma(\gamma\gamma \rightarrow h_0) \propto 1 + \lambda_{\gamma} \tilde{\lambda}_{\gamma} \pm l_{\gamma} \tilde{l}_{\gamma} \cos 2\Delta\phi$$

which needs measurement of $dL_0, dL_2, dL_{\parallel}, dL_{\perp}$

In γe collisions the picture is quite similar, there are also 16 independent luminosity distributions, though in practice not all are equaly important.

$\gamma\gamma$ and γ e luminosity spectra at TESLA(500)

with various cuts on the longitudinal momentum; 0 and 2 are the total helicities of colliding photons (1/2 and 3/2 in the case of γ e collisions)

Measurement of $\gamma\gamma$ luminosity using

 $\gamma \gamma \rightarrow l^+ l^- (l = e, \mu)$

The cross section

$$\frac{d\sigma}{d(\cos\theta)} = \frac{2\pi\alpha^2}{W_{\gamma\gamma}^2} \left[(1 - \lambda_\gamma \tilde{\lambda}_\gamma) \frac{(1 + \cos^2\theta)}{(1 - \cos^2\theta)} - l_\gamma \tilde{l}_\gamma \cos(4\phi - 2(\gamma + \tilde{\gamma})) \right] \frac{d\phi}{2\pi}$$

 $\lambda, \tilde{\lambda}$ and l, \tilde{l} are circular and linear polarizations ϕ asimuthal angle of decay plane $\gamma, \tilde{\gamma}$ asimuthal angle of linear polarization.

If photons have only circular polarization

$$d\sigma_2 = \frac{4\pi\alpha^2}{W_{\gamma\gamma}^2} \frac{(1+\cos^2\theta)}{(1-\cos^2\theta)} d(\cos\theta)$$
$$d\sigma_0 = 0$$

Pair are produced only in collisions of photons with total helicity 2, therefore one can measure only L_2 .

To measure L_0 one has to change polarization of one beam to opposite (part of time)(V.T., LCWS, 1993)

Linear polarizations $(l_{\gamma}\tilde{l}_{\gamma})$ can be measured by the azimuthal variation of the cross section at large angles.

Simulation $\gamma \gamma \rightarrow l^+ l^-$

 $2E_0 = 200(500)$ GeV, other parameters from TESLA TDR. The distribution of detected pairs on invariant mass for 28.3 (10.3) hours runs

Stat. accuracy of $\frac{dL}{dW\gamma\gamma}$ in the peak (important for the Higgs) is about 0.07–0.14 % (2 E_0 = 200 – 500 GeV) for one year (10⁷ s).

The expected accuracy for SM Higgs $\frac{\sigma(\Gamma\gamma\gamma)}{\Gamma\gamma\gamma} \sim 1.5\%$, not limited by (statistical) luminosity uncertainty.

Measurement of $\gamma \gamma$ luminosity with $J_z = 0$ using $\gamma \gamma \rightarrow l^+ l^- \gamma (l = e, \mu)$

Due to $\sigma_{\gamma\gamma \rightarrow l^+l^-} \approx 0$ and necessity of spin-flip for measurement of $L_{\gamma\gamma}(J_z = 0)$ it was of interest to look the same process with additional photon. Calculation was done using ComHEP:

The cross section $\gamma\gamma \rightarrow l^+l^-\gamma(J_z=0)$ is not neglegible, but 300 times lower than allowed proccess $\gamma\gamma \rightarrow l^+l^-(J_z=2)$. Spin-flip of the later process looks much more attractive for measuement of $L_{\gamma\gamma}(J_z=0)$. Measurement of $\gamma\gamma$ luminosity using

 $\gamma \gamma \rightarrow l^+ l^- l^+ l^- (l = e, \mu)$

This process is 4-th order on α but the total cross section is large because proportional to $1/m_l^2$ (instead of $1/E^2$ for $\gamma\gamma \rightarrow l^+l^-$). For small angles $\sigma(\gamma\gamma \rightarrow l^+l^-l^+l^-) \propto 1/(E\theta)^2$. Calculation was done using ComHEP:

At small angles main contribution gives the peripheral diagram and the cross section is prop. to $1/\theta^2$. At large angles (above 0.1 rad) main contibution gives the diagram where the second pair is emitted by one of leptons of the first pair.

The region $\theta \ge 20$ mrad with detection of final electrons in the forward calorimeter looks attractive, but obtaining of small systematic errors is problematic.

Resume on measurement of $\gamma\gamma$ luminosity.

The process $\gamma \gamma \rightarrow l^+ l^-$ has the cross section

$$\sigma pprox rac{0.95}{W_{\gamma\gamma}^2 ({
m TeV})} (1 - \lambda_\gamma ilde\lambda_\gamma)$$
 pb

is the best process for measurement of $\gamma\gamma$ luminosity.

For $\gamma \gamma \rightarrow l^+ l^- \gamma$ ($J_z = 0, \ \theta > 0.2$)

$$\sigma pprox rac{5 imes 10^{-3}}{W_{\gamma\gamma}^2 ({
m TeV})} ~{
m pb}$$

For $\gamma \gamma \rightarrow l^+ l^- l^+ l^-$

$$\sigma(heta > 0.15) \sim rac{3 imes 10^{-3}}{W_{\gamma\gamma}{}^2(extsf{TeV})} \;\; extsf{pb}$$

$$\sigma(heta > 0.02) \sim rac{0.1}{W_{\gamma\gamma}^2 ({
m TeV})}$$
 pb

and it is very large at small angles which are occupied by beam backgrounds.

Measurement of γe luminosity using

 $\gamma e \rightarrow \gamma e$

Cross section at $\theta \gg 1/\gamma$

$$\frac{d\sigma}{d\cos\theta_{\gamma}} = \frac{\pi\alpha^2}{2W_{\gamma e}{}^2} \left[(1 - 2\lambda_e\lambda_{\gamma})(1 - \cos\theta_{\gamma}) + (1 + 2\lambda_e\lambda_{\gamma})\frac{4}{1 - \cos\theta_{\gamma}} \right]$$

 λ_{γ} circular polarization of the photon λ_{e} the electron helicity z-axis is along the initial direction of the electron One can see that

 $d\sigma_{3/2} \propto const \times (1 - \cos \theta) \ll d\sigma_{1/2} \propto const \times \frac{4}{1 - \cos \theta}$ Additional problem: there are two combinations of γ e collisions, these luminosities should be measured separately

The cross section with $J_z = 3/2$ is much lower than for $J_z = 1/2$ at all angles. They can be separated using the angular distribution but statistical accuracy for $J_z = 3/2$ will rather poor:

For TESLA(500) and $t = 10^7 \text{ sec } N_{1/2} = 3 \times 10^5$, $N_{3/2} = 5 \times 10^3$. The luminosities $L_{1/2}$ and $L_{3/2}$ are measured with accuraces 0.3% and 20%, respectively.

After inversion of polarization for one of beams $N_{1/2} = 5 \times 10^4$, $N_{3/2} = 3 \times 10^4$ and the accuracies for $L_{1/2}$ and $L_{3/2}$ are 0.8% and 1.8%, respectively. Thus, the measurement with inverted polarization allows to improve the accuracy for $L_{3/2}$ from 20% to 0.8%.

Measurement of γe luminosity using $\gamma e \rightarrow e^- e^+ e^-$

The cross section (see below) at $\theta < 70$ mrad is larger than for $\gamma e \rightarrow \gamma e$

Together with $\gamma e \rightarrow \gamma e$ it allows to measure $L_{3/2}$ with sufficiently good accuracy without the inversion of beam polarizations or can be used for the cross check.

Resume on $\gamma e \rightarrow \gamma e$: studing angular distribution of γe system in c.m.s. system for each $\Delta E_1 \Delta E_2$ bin, one can find the γe luminosities for both mirror combinations, but the accuracy of $L_{3/2}$ will be much worse than for $L_{1/2}$.

One of solutions: similarly to $\gamma\gamma$ collisions the inversion of the polarization for one beam allows to measure $L_{1/2}$ and $L_{3/2}$ with comparable accuracy.

Second solution: to use simultaneously the process $\gamma e \rightarrow e e^+e^-$ which depends on polarization differently and very weakly.

Unsolved problem: how to measure λ_e and λ_γ separately?

For example:

$$\sigma_{\gamma e \to W
u} \propto (1 - 2\lambda_e)(a + b\lambda_{\gamma}).$$

The process $\gamma e \rightarrow \gamma e$ depends on all the photon and electron polarizations, but only at $\theta \sim m_e/E$

One can use $\gamma e \rightarrow eZ$ (may be there is better one?)

$$W_{\gamma e} \gg M_Z$$
 $W_{\gamma e} \sim M_Z$

 $\sigma \propto \frac{(1+2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e + \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e - \lambda_\gamma)}{1 - \cos\theta}; \ \sigma \propto \frac{(1-2\lambda_e\lambda_\gamma) - 0.2(2\lambda_e\lambda_\gamma)}{1 - \cos\theta};$

How to measure linear polariazations of laser photons in γ e collisions? Is it necessary?

Note, photons participating in γe collisions and $\gamma \gamma$ collisons are not the same !

Conclusions

1. $\gamma\gamma$ lumonosity (most important polariazation combinations) can be measured by the process $\gamma\gamma \rightarrow l^+l^-(l = e, \mu)$, inversion of the polarization for one beam is required for measurement of L_0 .

The processes $\gamma\gamma \rightarrow l^+l^-\gamma$ and $\gamma\gamma \rightarrow l^+l^-l^+l^$ are sensitive to L_0 , but the cross sections are rather small.

2. γe luminosity (and the product $\lambda_e \lambda_\gamma$) can be measured using $\gamma e \rightarrow \gamma e$ and $\gamma e \rightarrow e e^+ e^-$. The first process with spin inversion for one beam is sufficient, then the second one can be used for cross check.

For separate measurement of $\lambda_e, \lambda_\gamma$ one can use the process $\gamma e \rightarrow eZ$ though the accuracy here will be worser than for the product.

Conclusion remarks.

 $\gamma\gamma$ physics: past, present and future

past and present: $\gamma^* \gamma^* \to X$ at e⁺e⁻ storage rings

$$dn_{\gamma} \sim 0.03 \frac{d\omega}{\omega}$$

 $L_{\gamma\gamma} \ll L_{e^+e^-}$ $W_{\gamma\gamma} \ll 2E_0$

 $e^+e^- \rightarrow e^+e^- e^+e^-$ at Novosibirsk 1970 $\mu^+\mu^-$ at Frascati 1972 η' at SLAC 1979 1980–now — several \times 100 experimental papers from all e^+e^- colliders and detectors. Physics is

quite interesting, though no great discoveries.

Future

$\gamma\gamma$, γe at linear colliders

 $n_{\gamma} \sim n_e$

 $L_{\gamma\gamma} \sim L_{e^+e^-}$ $W_{\gamma\gamma} \sim W_{e^+e^-}$

1973-76	beginning of works on e ⁺ e ⁻ LC at Novosibirsk
1981	idea of photon colliders
1986	Conceptual Design of VLEPP
1988	beginning of Intern. study on LC
1991	beg. of Intern. study on physics and detectors at I
1996	ZERO Design of NLC
1997	Conceptual Dessign of TESLA and JLC
2001	Technical Design of TESLA
2001	Snowmass 2001, LC is the next HEP project
2003(now)	-TESLA has not been approved by German
	government, future of LC is quite uncertain.
There are 3 r	egional projects: TESLA, NLC, JLC, (CLIC
is next-to nex	<t)< td=""></t)<>
Questions: V	vhich one ? where ? when?
Choice of te	echnology 2004–2005
Choice of pl	ace 2005-2006
Reginning o	f construction $2007-2008$
Boginning o	$f_0 \pm o^-$ experiments 2013 2015
	f = 2015 - 2015
Beginning 0	$\gamma\gamma$ experiments 2010-2018

It seems, a Linear Collider e^+e^- , $\gamma\gamma$, γe collider is a dream for several generations. Hopefully it will be materialized faster than Leonardo da Vinci's idea of a helicopter.