

Two Photon Physics at Future Linear Colliders

- The next machine that will probe up to the TeV scale is the LHC
 - Should settle the question on Electroweak
 Symmetry breaking and likely on physics beyond the SM (SUSY,...)
- World consensus: To complete the picture further a high precision machine will be needed, i.e. a e+e-collider
- Options:

TESLA	NLC/JLC	CLIC
SC	Warm RF	TBA
0.09→0.8TeV	$.09 \rightarrow 1 TeV$	$0.09 \rightarrow 5 TeV$
TDR	CDR	R&D

TESLA/NLC technology almost ready : A technology decision in 2004 ? CERN: Development of Two-Beam acceleration scheme to reach 150 MV/m Not ready before 2007

Two interaction regions foreseen... one for gamma-gamma?

Two-photon interactions

Two ways to have two photon interactions at linear colliders • Weizacker-Williams spectrum from electron beams, similar to LEP • Convert electron beams into photon beams by Compton backscattering of laser photons \Rightarrow high energy $\gamma\gamma$ & high luminosity

The ECFA-DESY study

- Activities in Europe
- Photon collider workshop @ DESY June 14 (Heuer, Telnov, Walker, ADR)
- TESLA-TDR (March 2001) Appendix
- ECFA-DESY workshop 2001-2003, last meeting was last week
 - Working group on $\gamma\gamma$ /e γ collider technology
 - K. Moenig and V. Telnov
 - Working group on γγ physics (http://www-h1.desy.de/~maxfield/ggcol/lcgg.html)
 M. Kraemer, M. Krawczyk, S. Maxfield, ADR, (S. Soldner-Rembold)
 ⇒ Emphasis on real lumi spectra, detector simulation, backgrounds
- Activities in US (& Japan)
 - Working Group on physics Studies (M. Velasco, J. Gronberg)
 - Good contact with us in Europe
 - Working Group on physics Studies in Japan (T. Takahashi)
 - R&D for a gamma-gamma collider (J. Gronberg)
- Activities in the CLIC working group
 - Studies of $\gamma\gamma$ at 3 -5 TeV

Advantages of $\gamma\gamma$ and $e\gamma$

- Higher cross sections for charged particles
- Different J^{PC} state than in e+e-
- Higgs can be s-channel produced
- Higher mass reach in some scenarios
- CP analysis opportunities (linear γ polarization...)
- Can test precisely couplings to photons...
- \Rightarrow Physics Menu
 - QCD
 - Higgs
 - EW: e.g. Triple Gauge couplings
 - Supersymmetry
 - Alternative theories

Luminosity Spectra

TDR 2001 parameters

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{2E_{0} [\text{GeV}]}{\lambda_{L} [\mu\text{m}]/x} \frac{200}{1.06/1.8} \frac{500}{1.06/7.2} \frac{800}{\lambda_{L} [\mu\text{m}]/x} \frac{1.06/1.8}{1.06/4.5} \frac{1.06/7.2}{1.06/7.2} \frac{1}{L_{L} [\lambda_{scal}]} \frac{1.35}{1} \frac{1}{1} \frac{1}{N/10^{10}} \frac{2}{2} \frac{2}{2} \frac{2}{2} \frac{2}{\sigma_{z} [\text{mm}]} \frac{0.3}{0.3} \frac{0.3}{0.3} \frac{0.3}{0.3} \frac{0.3}{0.3} \frac{1}{f_{rep} \times n_{b} [\text{kHz}]} \frac{14.1}{14.1} 1$						_
$\begin{split} \lambda_{L} \ [\mu\text{m}]/x & 1.06/1.8 \ 1.06/4.5 \ 1.06/7.2 \\ t_{L} \ [\lambda_{scat}] & 1.35 \ 1 & 1 \\ N/10^{10} & 2 & 2 & 2 \\ \sigma_{z} \ [\text{mm}] & 0.3 & 0.3 & 0.3 \\ f_{rep} \times n_{b} \ [\text{kHz}] & 14.1 & 14.1 & 14.1 \\ \gamma \epsilon_{x/y}/10^{-6} \ [\text{m} \cdot \text{rad}] & 2.5/0.03 \ 2.5/0.03 \ 2.5/0.03 \\ \beta_{x/y} \ [\text{mm}] \ at \ IP & 1.5/0.3 \ 1.5/0.3 \ 1.5/0.3 \\ \sigma_{x/y} \ [\text{nm}] \ 140/6.8 \ 88/4.3 \ 69/3.4 \\ b \ [\text{mm}] & 2.6 \ 2.1 \ 2.7 \\ L_{ee} \ (geom) \ [10^{34} \ \text{cm}^{-2}\text{s}^{-1}] \ 4.8 \ 12 \ 19 \\ L_{\gamma\gamma}(z > 0.8z_{m}\gamma\gamma) \ [10^{34} \ \text{cm}^{-2}\text{s}^{-1}] \ 0.35 \ 1. \ 1.6 \\ L_{ee}(z > 0.65) \ [10^{34} \ \text{cm}^{-2}\text{s}^{-1}] \ 0.03 \ 0.08 \ 0.14 \end{split} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2E_0$ [GeV]	200	500	800		feve!
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\lambda_L \ [\ \mu m]/x$	1.06/1.8	1.06/4.5	1.06/7.2		4000
$\begin{split} & N/10^{10} & 2 & 2 & 2 \\ \sigma_z \ [\mathrm{mm}] & 0.3 & 0.3 & 0.3 \\ f_{rep} \times n_b \ [\mathrm{kHz}] & 14.1 & 14.1 & 14.1 \\ \gamma \epsilon_{x/y}/10^{-6} \ [\mathrm{m} \cdot \mathrm{rad}] & 2.5/0.03 & 2.5/0.03 & 2.5/0.03 \\ \beta_{x/y} \ [\mathrm{nm}] \ \mathrm{at} \ \mathrm{IP} & 1.5/0.3 & 1.5/0.3 & 1.5/0.3 \\ \sigma_{x/y} \ [\mathrm{nm}] & 140/6.8 & 88/4.3 & 69/3.4 \\ \mathrm{b} \ [\mathrm{nm}] & 2.6 & 2.1 & 2.7 \\ Lee \ (geom) \ [10^{34} \ \mathrm{cm}^{-2}\mathrm{s}^{-1}] & 4.8 & 12 & 19 \\ L_{\gamma\gamma}(z > 0.8z_{m,\gamma\gamma}) \ [10^{34} \ \mathrm{cm}^{-2}\mathrm{s}^{-1}] & 0.44 & 1.15 & 1.7 \\ L_{\gamma e}(z > 0.65) \ [10^{34} \ \mathrm{cm}^{-2}\mathrm{s}^{-1}] & 0.03 & 0.08 & 0.14 \end{split} $	$ \begin{split} & N/10^{10} & 2 & 2 & 2 \\ & \sigma_z \; [\text{nm}] & 0.3 & 0.3 & 0.3 \\ & f_{rep} \times n_b \; [\text{kHz}] & 14.1 & 14.1 & 14.1 \\ & \gamma \epsilon_{x/y} / 10^{-6} \; [\text{m} \cdot \text{rad}] & 2.5 / 0.03 & 2.5 / 0.03 & 2.5 / 0.03 \\ & \beta_{x/y} \; [\text{nm}] \; \text{at IP} & 1.5 / 0.3 & 1.5 / 0.3 & 1.5 / 0.3 \\ & \sigma_{x/y} \; [\text{nm}] \; 140 / 6.8 \; 88 / 4.3 \; 69 / 3.4 \\ & b \; [\text{nm}] & 2.6 & 2.1 & 2.7 \\ & L_{ee} \; (geom) \; [10^{34} \; \text{cm}^{-2} \text{s}^{-1}] \; 4.8 \; 12 \; 19 \\ & L_{\gamma \gamma} (z > 0.8 z_{m, \gamma Y} \;) [10^{34} \; \text{cm}^{-2} \text{s}^{-1}] \; 0.35 \; 1. \; 1.6 \\ & L_{ee} (z > 0.65) [10^{34} \; \text{cm}^{-2} \text{s}^{-1}] \; 0.03 \; 0.08 \; 0.14 \end{split} $	$t_L \left[\lambda_{scat} \right]$	1.35	1	1		
$\begin{split} \sigma_{z} \ [\text{mm}] & 0.3 & 0.3 & 0.3 \\ f_{rep} \times n_{b} \ [\text{kHz}] & 14.1 & 14.1 & 14.1 \\ \gamma \epsilon_{x/y} / 10^{-6} \ [\text{m} \cdot \text{rad}] & 2.5 / 0.03 & 2.5 / 0.03 & 2.5 / 0.03 \\ \beta_{x/y} \ [\text{nm}] \ at \ IP & 1.5 / 0.3 & 1.5 / 0.3 & 1.5 / 0.3 \\ \sigma_{x/y} \ [\text{nm}] \ 140 / 6.8 & 88 / 4.3 & 69 / 3.4 \\ b \ [\text{nm}] & 2.6 & 2.1 & 2.7 \\ L_{ee} \ (geom) \ [10^{34} \ \text{cm}^{-2} \text{s}^{-1}] & 4.8 & 12 & 19 \\ L_{\gamma\gamma} (z > 0.8 z_{m}, \gamma \gamma) \ [10^{34} \ \text{cm}^{-2} \text{s}^{-1}] & 0.44 & 1.15 & 1.7 \\ L_{re} (z > 0.65) \ [10^{34} \ \text{cm}^{-2} \text{s}^{-1}] & 0.03 & 0.08 & 0.14 \end{split} $	$ \sigma_{z} \ [\text{mm}] & 0.3 & 0.3 & 0.3 \\ f_{rep} \times n_{b} \ [\text{kHz}] & 14.1 & 14.1 & 14.1 \\ \gamma \epsilon_{x/y} / 10^{-6} \ [\text{m} \cdot \text{rad}] & 2.5 / 0.03 & 2.5 / 0.03 & 2.5 / 0.03 \\ \beta_{x/y} \ [\text{mm}] \ at \ IP & 1.5 / 0.3 & 1.5 / 0.3 & 1.5 / 0.3 \\ \sigma_{x/y} \ [\text{nm}] & 140 / 6.8 & 88 / 4.3 & 69 / 3.4 \\ b \ [\text{mm}] & 2.6 & 2.1 & 2.7 \\ L_{ee} \ (geom) \ [10^{34} \ \text{cm}^{-2}\text{s}^{-1}] & 4.8 & 12 & 19 \\ L_{\gamma\gamma} (z > 0.8 z_{m, \gamma \gamma}) \ [10^{34} \ \text{cm}^{-2}\text{s}^{-1}] & 0.44 & 1.15 & 1.7 \\ L_{\gamma e} (z > 0.65) \ [10^{34} \ \text{cm}^{-2}\text{s}^{-1}] & 0.03 & 0.08 & 0.14 \\ \hline \ L_{\gamma\gamma} (z > 0.8 z_{m}) \sim \frac{1}{3} L_{e^{+}e^{-}} . \end{bmatrix} $	$N/10^{10}$	2	2	2		
$\begin{split} f_{rep} \times n_b \ [\text{kHz}] & 14.1 & 14.1 & 14.1 \\ \gamma \epsilon_{x/y} / 10^{-6} \ [\text{m} \cdot \text{rad}] & 2.5 / 0.03 & 2.5 / 0.03 \\ \beta_{x/y} \ [\text{mm}] \ \text{at IP} & 1.5 / 0.3 & 1.5 / 0.3 & 1.5 / 0.3 \\ \sigma_{x/y} \ [\text{nm}] & 140 / 6.8 & 88 / 4.3 & 69 / 3.4 \\ \text{b} \ [\text{mm}] & 2.6 & 2.1 & 2.7 \\ L_{ee} \ (geom) \ [10^{34} \ \text{cm}^{-2} \text{s}^{-1}] & 4.8 & 12 & 19 \\ L_{\gamma\gamma} (z > 0.8 z_{m, \gamma\gamma}) \ [10^{34} \ \text{cm}^{-2} \text{s}^{-1}] & 0.44 & 1.15 & 1.7 \\ L_{\gamma e} (z > 0.8 z_{m, \gamma e}) \ [10^{34} \ \text{cm}^{-2} \text{s}^{-1}] & 0.35 & 1. & 1.6 \\ L_{ee} (z > 0.65) \ [10^{34} \ \text{cm}^{-2} \text{s}^{-1}] & 0.03 & 0.08 & 0.14 \end{split}$	$ \begin{aligned} &f_{rep} \times n_b \ [\text{kHz}] & 14.1 & 14.1 & 14.1 \\ &\gamma \epsilon_{x/y} / 10^{-6} \ [\text{m} \cdot \text{rad}] & 2.5 / 0.03 & 2.5 / 0.03 & 2.5 / 0.03 \\ &\beta_{x/y} \ [\text{mm}] \ \text{at IP} & 1.5 / 0.3 & 1.5 / 0.3 & 1.5 / 0.3 \\ &\sigma_{x/y} \ [\text{nm}] \ \text{at IP} & 1.4 / 0.6.8 & 88 / 4.3 & 69 / 3.4 \\ &b \ [\text{mm}] & 2.6 & 2.1 & 2.7 \\ &L_{ee} \ (geom) \ [10^{34} \ \text{cm}^{-2} \text{s}^{-1}] & 4.8 & 12 & 19 \\ &L_{\gamma\gamma} (z > 0.8 z_m, \gamma \gamma) \ [10^{34} \ \text{cm}^{-2} \text{s}^{-1}] & 0.44 & 1.15 & 1.7 \\ &L_{re} (z > 0.65) \ [10^{34} \ \text{cm}^{-2} \text{s}^{-1}] & 0.03 & 0.08 & 0.14 \end{aligned} $	$\sigma_{z} [{\rm mm}]$	0.3	0.3	0.3		2000
$\begin{split} &\gamma \epsilon_{x/y} / 10^{-6} \; [\text{m} \cdot \text{rad}] & 2.5 / 0.03 \; 2.5 / 0.03 \; 2.5 / 0.03 \\ &\beta_{x/y} \; [\text{mm}] \; \text{at IP} & 1.5 / 0.3 \; 1.5 / 0.3 \; 1.5 / 0.3 \\ &\sigma_{x/y} \; [\text{nm}] \; 140 / 6.8 \; 88 / 4.3 \; 69 / 3.4 \\ &\text{b} \; [\text{nm}] \; 2.6 \; 2.1 \; 2.7 \\ &L_{ee} \; (geom) \; [10^{34} \; \text{cm}^{-2} \text{s}^{-1}] \; 4.8 \; 12 \; 19 \\ &L_{\gamma\gamma}(z > 0.8 z_{m, \gamma\gamma}) \; [10^{34} \; \text{cm}^{-2} \text{s}^{-1}] \; 0.44 \; 1.15 \; 1.7 \\ &L_{\gamma e}(z > 0.8 z_{m, \gamma e}) \; [10^{34} \; \text{cm}^{-2} \text{s}^{-1}] \; 0.35 \; 1. \; 1.6 \\ &L_{ee}(z > 0.65) \; [10^{34} \; \text{cm}^{-2} \text{s}^{-1}] \; 0.03 \; 0.08 \; 0.14 \end{split} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$f_{rep} \times n_b \; [\text{kHz}]$	14.1	14.1	14.1		
$ \begin{split} \beta_{x/y} \ [\text{nm}] \ \text{at IP} & 1.5/0.3 & 1.5/0.3 & 1.5/0.3 \\ \sigma_{x/y} \ [\text{nm}] & 140/6.8 & 88/4.3 & 69/3.4 \\ \text{b} \ [\text{nm}] & 2.6 & 2.1 & 2.7 \\ L_{ee} \ (geom) \ [10^{34} \ \text{cm}^{-2}\text{s}^{-1}] & 4.8 & 12 & 19 \\ L_{\gamma\gamma}(z > 0.8z_{m,\gamma\gamma}) \ [10^{34} \ \text{cm}^{-2}\text{s}^{-1}] & 0.44 & 1.15 & 1.7 \\ L_{\gamma e}(z > 0.8z_{m,\gamma e}) \ [10^{34} \ \text{cm}^{-2}\text{s}^{-1}] & 0.35 & 1. & 1.6 \\ L_{ee}(z > 0.65) \ [10^{34} \ \text{cm}^{-2}\text{s}^{-1}] & 0.03 & 0.08 & 0.14 \end{split} $	$\begin{array}{c} \beta_{x/y} \; [\mathrm{nm}] \; \mathrm{at} \; \mathrm{IP} & 1.5/0.3 & 1.5/0.3 & 1.5/0.3 \\ \sigma_{x/y} \; [\mathrm{nm}] & 140/6.8 & 88/4.3 & 69/3.4 \\ \mathrm{b} \; [\mathrm{nm}] & 2.6 & 2.1 & 2.7 \\ L_{ee} \; (geom) \; [10^{34} \; \mathrm{cm}^{-2}\mathrm{s}^{-1}] & 4.8 & 12 & 19 \\ L_{\gamma\gamma}(z > 0.8z_{m,\gamma \gamma}) \; [10^{34} \; \mathrm{cm}^{-2}\mathrm{s}^{-1}] & 0.44 & 1.15 & 1.7 \\ L_{\gamma e}(z > 0.65) \; [10^{34} \; \mathrm{cm}^{-2}\mathrm{s}^{-1}] & 0.03 & 0.08 & 0.14 \end{array} $	$\gamma \epsilon_{x/y}/10^{-6} \ [{\rm m}{\cdot}{\rm rad}]$	2.5/0.03	2.5/0.03	2.5/0.03		
$\begin{split} & \sigma_{x/y} \; [\text{nm}] & 140/6.8 & 88/4.3 & 69/3.4 \\ & \text{b}\; [\text{nm}] & 2.6 & 2.1 & 2.7 \\ & L_{ee} \; (geom) \; [10^{34} \; \text{cm}^{-2}\text{s}^{-1}] & 4.8 & 12 & 19 \\ & L_{\gamma\gamma}(z > 0.8z_{m,\gamma\gamma}) \; [10^{34} \; \text{cm}^{-2}\text{s}^{-1}] & 0.44 & 1.15 & 1.7 \\ & L_{\gamma e}(z > 0.8z_{m,\gamma e}) \; [10^{34} \; \text{cm}^{-2}\text{s}^{-1}] & 0.35 & 1. & 1.6 \\ & L_{ee}(z > 0.65) \; [10^{34} \; \text{cm}^{-2}\text{s}^{-1}] & 0.03 & 0.08 & 0.14 \end{split}$	$ \begin{split} & \sigma_{x/y} \; [\text{nm}] & 140/6.8 & 88/4.3 & 69/3.4 \\ & \text{b}\; [\text{nm}] & 2.6 & 2.1 & 2.7 \\ & L_{ee}\;(geom)\; [10^{34}\;\; \text{cm}^{-2}\text{s}^{-1}] & 4.8 & 12 & 19 \\ & L_{\gamma\gamma}(z>0.8z_{m,\gamma\gamma}\;)[10^{34}\;\; \text{cm}^{-2}\text{s}^{-1}] & 0.44 & 1.15 & 1.7 \\ & L_{\gamma e}(z>0.8z_{m,\gamma e}\;)[10^{34}\;\; \text{cm}^{-2}\text{s}^{-1}] & 0.35 & 1. & 1.6 \\ & L_{ee}(z>0.65)[10^{34}\;\; \text{cm}^{-2}\text{s}^{-1}] & 0.03 & 0.08 & 0.14 \\ \end{split} $	$\beta_{x/y} ~[{\rm mm}]$ at IP	1.5/0.3	1.5/0.3	1.5/0.3		0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	b [mm] 2.6 2.1 2.7 $L_{ee} (geom) [10^{34} \text{ cm}^{-2}\text{s}^{-1}]$ 4.8 12 19 $L_{\gamma\gamma}(z > 0.8z_{m,\gamma\gamma}) [10^{34} \text{ cm}^{-2}\text{s}^{-1}]$ 0.44 1.15 1.7 $L_{\gamma e}(z > 0.8z_{m,\gamma e}) [10^{34} \text{ cm}^{-2}\text{s}^{-1}]$ 0.35 1. 1.6 $L_{ee}(z > 0.65) [10^{34} \text{ cm}^{-2}\text{s}^{-1}]$ 0.03 0.08 0.14 $L_{\gamma\gamma}(z > 0.8z_m) \sim \frac{1}{3}L_{e^+e^-}.$ minosities files with PHOCOL (V. Telnov)	$\sigma_{x/y}$ [nm]	140/6.8	88/4.3	69/3.4		
$\begin{split} & L_{ee} \left(geom\right) \left[10^{34} \ \mathrm{cm}^{-2} \mathrm{s}^{-1}\right] & 4.8 & 12 & 19 \\ & L_{\gamma\gamma}(z > 0.8 z_{m,\gamma\gamma}) \left[10^{34} \ \mathrm{cm}^{-2} \mathrm{s}^{-1}\right] & 0.44 & 1.15 & 1.7 \\ & L_{\gamma e}(z > 0.8 z_{m,\gamma e}) \left[10^{34} \ \mathrm{cm}^{-2} \mathrm{s}^{-1}\right] & 0.35 & 1. & 1.6 \\ & L_{ee}(z > 0.65) \left[10^{34} \ \mathrm{cm}^{-2} \mathrm{s}^{-1}\right] & 0.03 & 0.08 & 0.14 \end{split}$	$ \begin{split} & L_{ee} (geom) [10^{34} \ \ \mathrm{cm}^{-2} \mathrm{s}^{-1}] & 4.8 & 12 & 19 \\ & L_{\gamma\gamma}(z>0.8 z_{m,\gamma\gamma}) [10^{34} \ \mathrm{cm}^{-2} \mathrm{s}^{-1}] & 0.44 & 1.15 & 1.7 \\ & L_{\gamma e}(z>0.8 z_{m,\gamma e}) [10^{34} \ \mathrm{cm}^{-2} \mathrm{s}^{-1}] & 0.35 & 1. & 1.6 \\ & L_{ee}(z>0.65) [10^{34} \ \mathrm{cm}^{-2} \mathrm{s}^{-1}] & 0.03 & 0.08 & 0.14 \end{split} $	b [mm]	2.6	2.1	2.7		
$L_{\gamma\gamma}(z > 0.8z_{m,\gamma\gamma})[10^{34} \text{ cm}^{-2}\text{s}^{-1}] 0.44 1.15 1.7$ $L_{\gamma e}(z > 0.8z_{m,\gamma e})[10^{34} \text{ cm}^{-2}\text{s}^{-1}] 0.35 1. 1.6$ $L_{ee}(z > 0.65)[10^{34} \text{ cm}^{-2}\text{s}^{-1}] 0.03 0.08 0.14$ $L_{\gamma\gamma}(z > 0.8z_{m}) \sim \frac{1}{3}L_{e^{+}e^{-}}.$ 5000	$\begin{split} & L_{\gamma\gamma}(z>0.8z_{m,\gamma\gamma})[10^{34} \ {\rm cm}^{-2}{\rm s}^{-1}] & 0.44 & 1.15 & 1.7 \\ & L_{\gamma e}(z>0.8z_{m,\gamma e})[10^{34} \ {\rm cm}^{-2}{\rm s}^{-1}] & 0.35 & 1. & 1.6 \\ & L_{ee}(z>0.65)[10^{34} \ {\rm cm}^{-2}{\rm s}^{-1}] & 0.03 & 0.08 & 0.14 \end{split}$	$L_{ee} (geom) [10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	4.8	12	19		ents
$L_{\gamma e}(z > 0.8 z_{m,\gamma e})[10^{34} \text{ cm}^{-2} \text{s}^{-1}] 0.35 1. 1.6$ $L_{ee}(z > 0.65)[10^{34} \text{ cm}^{-2} \text{s}^{-1}] 0.03 0.08 0.14$ $L_{\gamma \gamma}(z > 0.8 z_m) \sim \frac{1}{3} L_{e^+ e^-}.$ 5000	$L_{\gamma e}(z > 0.8z_{m,\gamma e})[10^{34} \text{ cm}^{-2}\text{s}^{-1}] 0.35 1. 1.6$ $L_{ee}(z > 0.65)[10^{34} \text{ cm}^{-2}\text{s}^{-1}] 0.03 0.08 0.14$ $L_{\gamma \gamma}(z > 0.8z_{m}) \sim \frac{1}{3}L_{e^{+}e^{-}}.$ minosities files with PHOCOL (V. Telnov)	$L_{\gamma\gamma}(z > 0.8 z_{m,\gamma\gamma})[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	0.44	1.15	1.7		eve
$L_{ee}(z > 0.65)[10^{34} \text{ cm}^{-2}\text{s}^{-1}] \qquad 0.03 \qquad 0.08 \qquad 0.14$ $L_{\gamma\gamma}(z > 0.8z_m) \sim \frac{1}{3}L_{e^+e^-}.$ 5000	$\begin{split} & L_{ee}(z>0.65)[10^{34}~{\rm cm}^{-2}{\rm s}^{-1}] & 0.03 & 0.08 & 0.14 \\ & \\ & L_{\gamma\gamma}(z>0.8z_m)\sim \frac{1}{3}L_{e^+e^-}. \end{split}$	$L_{\gamma e}(z > 0.8 z_{m,\gamma e})[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	0.35	1.	1.6		** 10000
$L_{\gamma\gamma}(z > 0.8z_m) \sim \frac{1}{3}L_{e^+e^-}.$ 5000	$L_{\gamma\gamma}(z>0.8z_m)\sim \frac{1}{3}L_{e^+e^-}.$ minosities files with PHOCOL (V. Telnov)	$L_{ee}(z>0.65)[10^{34}~{\rm cm}^{-2}{\rm s}^{-1}]$	0.03	0.08	0.14		10000
	minosities files with PHOCOL (V. Telnov)	$L_{\gamma\gamma}(z>0.8z)$	$_m) \sim \frac{1}{2}$	$\frac{1}{3}L_{e^+e^-}$			5000
n be used via CIRCE (T. Ohl)	-	alutical approxima	tion (OMP.	A7 (A	Zarnock	i)

Tools: Monte Carlos & Tuning

Background studies

Study beam related background: e+e- pairs, overlap events, neutrons

- # of QCD events overlapping now under control (1 evt@ 200 GeV and 2.5 evts @500 GeV). All groups agree (D. Asner, ADR, Telnov, Warsaw)
- # of hits in the layers of the pixel detector per bunch crossing
- Incoherent pair production: essentially the same as for e+e-
- Coherent pair production: High! but ok, similar to e+e-
 - ⇒ same vertex detector as for e+e-(Moenig,Sekaric)
- Neutrons? Probably ok (V. Telnov)

Total Cross Section

Fixed $x = 4.8 \rightarrow$ change laser energy

Pancheri, Grau, Godbole, ADR

Can measure $\sigma(\gamma\gamma)_{tot}$ to 7-15% at several energies

e+e- collider

- What can be done with an e+e- collider
 - Structure of the photon
 - Polarised structure (few points)
 - γγ scattering (jets charm)
 - $\gamma\gamma$ total cross section (difficult!)
 - $\gamma^*\gamma^*$ total cross section : unique!
 - ...But no new physics search

γ*γ* cross section Kwiecinski et al. (and many others)

$\theta_{min} - \theta_{max}$	$\sigma(e^+)$	$e^- \rightarrow e^-$	$e^+e^- + hadrons$) [fb]	Events / year
	Born	Hard	Full (LS)	Full (LS)
10-20	134	365	450	90000
20-30	16	41	46	9200
30-40	3.5	8	9	1800
40-50	1.1	2.3	2.5	500
50-70	0.6	1.1	1.3	260
30–70	5.2	11	13	2600

Photon structure function reach at a photon collider

Unique: the polarised structure of the photon Use of polarised beams in e+e- or $\gamma\gamma/e\gamma$

Stratmann and Vogelsang

Production Mechanism for Neutral Higgs Bosons

- This ECFA-DESY workshop
 - Study H→ bb, with realistic spectra, background, B-tagging efficiency,...
 - Study H \rightarrow WW,ZZ
 - Study model separation power
 - Study spin of Higgs in $H {\rightarrow}$ WW,ZZ
 - Study CP properties of the Higgs
 - Study MSSM Higgs (H,A): extend e+e- reach
 - Study of the charged Higgs (US)

Heralded as THE key measurement for the gamma-gamma option

The precise measurement of the 2-photon width of the Higgs is very important. It is affected by all charged particles that can occur in the loop ⇒Very sensitive to new physics

Higgs

QCD bb in $\gamma\gamma$ suppression: V. Khoze,...

$$\begin{array}{ll} \text{Measure} & \Gamma(h \rightarrow \gamma \gamma) = \frac{[\Gamma(h \rightarrow \gamma \gamma) \text{BR}(h \rightarrow b \bar{b})]}{[\text{BR}(h \rightarrow b \bar{b})]} \end{array}$$

Note: BR($h \rightarrow bb$) measured to 1-2%

Example: 2HDM SM-like versus SM (Ginzburg, Krawczyk, Osland)

SM Higgs Analysis

SM Higgs: H→WW,ZZ

MSSM Higgs: H,A

e+e- collider: H,A produced in pairs, hence M_A reach is $\sqrt{s_{ee}}/2$ $\gamma\gamma$ collider: s-pair production, hence M_A reach is $0.8 \cdot \sqrt{s_{ee}}$

For illustration purposes use a specific MSSM prediction for the form factors of the scalar (Askawa et al):

$$\begin{split} m_{\phi} &= 500 GeV, \Gamma_{\phi} 1.9 GeV, \\ S_t &= 0.33, P_t = 0.15, \\ S_{\gamma} &= -1.3 - 1.2i, P_{\gamma} = -0.51 + 1.1i. \end{split}$$

Choose the MSSM point given above, calculate x_i, y_j for that choice of CP violating parameters.

Find regions in the x_i, y_j planes around this point outside which measurements of asymmetries can test the hypothesis of this being the correct model.

Do the same for the SM meaning $x_i, y_j = 0$ in our parametrisation.

R. Godbole et al. hep-ph/021136 & LCWS02

Exciting possibility to analyse CP structure of the scalar

Construct combined asymmetries from intial lepton polarization and decay lepton charge

Done with Compton spectra Using COMPAZ reduces sensitivity with factor 2

Needs detector simulation

The asymmetries have sensitivity to loop induced CP violation in the Higgs sector of the MSSM

Triple Gauge Couplings

Study
$$\gamma\gamma \rightarrow WW e\gamma \rightarrow W\nu$$

- Surger and

Sekaric, Moenig Bosovic, Anipko

Measure precisly the gauge couplings

	real	<i>E_{ey}</i> = 450 GeV	$E_{yy} = 400 GeV$	<i>E_{ee}</i> = 500 GeV
W±	/parasitic	$\int L_{\Delta} t = 110 \text{ fb}^{-1}$	<i>∫L∆t</i> =110 fb ⁻¹	<i>∫L∆†</i> =500 fb ⁻¹
γ	ΔL	0.1%	0.1%	
Ψ [±]	$\Delta \kappa_{\gamma} \cdot 10^{-4}$	9.9	6.7	3.1
W [∓]	Δλ _γ · 10-4	2.6	(6.0) prelim	4.3

sensitivity ~ proportional to the momentum of the particles involved in the
triple gauge boson vertex

Analysis includes detector simulation/3D fits/azimuthal decay angle Studies starting for quartic couplings in $\gamma\gamma \rightarrow WW$ and $\gamma\gamma \rightarrow WWZ$ I Marfin Use of optimal variables F. Nagel et al.

Search for deviations in the top couplings

 $e\gamma$ gives goodLiSensitivity e^+e^- Boos et al. γe

•		
	f_2^L	$f_2^{oldsymbol{R}}$
Tevatron $(\Delta_{ m sys.} \sim 10\%)$	$-0.18 \div +0.55$	$-0.24 \div +0.25$
LHC ($\Delta_{ m sys.}\sim 5\%$)	$-0.052 \div +0.097$	$-0.12 \div +0.13$
$e^+e^-~(\sqrt{s_{ee}}=0.5~{ m TeV})$	$-0.025 \div +0.025$	$-0.2 \div +0.2$
$\gamma e \ (\sqrt{s_{ee}} = 0.5 \ { m TeV})$	$-0.045 \div +0.045$	$-0.045 \div +0.045$
$\gamma e \ (\sqrt{s_{ee}} = 2 \text{ TeV})$	$-0.008 \div +0.008$	$-0.016 \div +0.016$

Beam energy: 250 GeV. L=20 fb⁻¹. Cut-off angle 30 deg.

 $\gamma\gamma \rightarrow tt$ Electric dipole moment Godbole et al.

No. of events	Charge asymmetry	Limit on dipole Moment
Ideal: 533	-0.031	$6.5 \ge 10^{-17} ecm$
Zarnecki: 238	-0.023	$1.3 \ge 10^{-16} \text{ ecm}$

Limits will better by factor 5 for 500 fb⁻¹.

Supersymmetry

Kraus, Wengler

F.S.	Compton	+ ISR	CompAZ	+ ISR	
eZ	4.26 pb	4.34 pb	3.07 pb	3.11 pb	
$\nu_e W$	11.56 pb	11.31 pb	6.71 pb	6.66 pb	
$\tilde{e}_R \chi_1^{(0)}$	155.3 fb	151.4 fb	90.5 fb	88.6 fb	
$\tilde{e}_L \chi_1^{(0)}$	15.38 fb	14.71 fb	9.08 fb	8.70 fb	

- between 20 events for squarks of 800 GeV and 2000 events per year for light squarks of 325 GeV
- about 20 events per year for heavy squarks (1500 GeV) by resolved Klasen, Berge contribution

Extra Dimensions

16 Extra space dimensions K Cheung σ(M_s)/σ(SM)=5% - σ(M_s)/σ(SM)=10% 12 ADD: Planck scale in TeV range n=2.4.6 M₈ (TeV) Photon collider has a large sensitivity |cos 8., |<cos(30)| 500 1000 1500 2000 T.Rizzo √s,, (GeV) M_{S} Reach (TeV units) for $L = 100 {\rm fb}^{-1}$ Reaction $e^+e^- \rightarrow f\overline{f}$ $6.5\sqrt{s}$ $e^+e^- \rightarrow e^+e^ 6.2\sqrt{s}$ $e^-e^- \rightarrow e^-e^ 6.0\sqrt{s}$ $pp \rightarrow \ell^+ \ell^-$ (LHC) 5.3Also Radion $pp \rightarrow jj$ (LHC) 9.0 search: $pp \rightarrow \gamma \gamma$ (LHC) 5.4 $\gamma\gamma
ightarrow \ell^+ \ell^-/t\overline{t}/jj$ J. Gunion et al. $4\sqrt{s}$ $4-5\sqrt{s}$ $\gamma\gamma \rightarrow \gamma\gamma/ZZ$ $\gamma\gamma \rightarrow W^+W^ 11\sqrt{s}$

Breakdown in QED due to prefered direction in space: azimuthal effects

this study: $p_T > 10 \text{ GeV}, 10^{\circ} < \theta < 170^{\circ}, L_{ee} = 500 \text{ fb}^{-1}$

Golden Processes

Reaction	Remarks	ep-ph/0103090
$\gamma\gamma \to h^0 \to b\bar{b}$	\mathcal{SM} or \mathcal{MSSM} Higgs, $M_{h^0} < 160 \text{ GeV}$	
$\gamma\gamma \to h^0 \to WW(WW^*)$	\mathcal{SM} Higgs, 140 GeV $< M_{h^0} < 190$ GeV	Higgs
$\gamma\gamma \to h^0 \to ZZ(ZZ^*)$	\mathcal{SM} Higgs, 180 GeV $< M_{h^0} < 350$ GeV	
$\gamma\gamma \to H, A \to b\bar{b}$	\mathcal{MSSM} heavy Higgs, for intermediate $\tan\beta$	
$\gamma\gamma \to \tilde{f}\bar{\tilde{f}}, \ \tilde{\chi}_i^+\tilde{\chi}_i^-, \ H^+H^-$	large cross sections, possible observations of FCNC	SUSV
$\gamma\gamma \to S[\bar{t}\bar{t}]$	$ ilde{t}ar{ ilde{t}}$ stoponium	5057
$\gamma e \to \tilde{e}^- \tilde{\chi}_1^0$	$M_{ ilde{e}^-} < 0.9 imes 2E_0 - M_{ ilde{\chi}_1^0}$	
$\gamma\gamma \to W^+W^-$	anomalous W interactions, extra dimensions	—
$\gamma e^- \to W^- \nu_e$	anomalous W couplings	Irii/quart
$\gamma\gamma \rightarrow WWWW, WWZZ$	strong WW scatt., quartic anomalous W,Z couplings	
$\gamma\gamma \to t\bar{t}$	anomalous top quark interactions	Тор
$\gamma e^- \to \bar{t} b \nu_e$	anomalous Wtb coupling	· • P
$\gamma\gamma \to hadrons$	total $\gamma\gamma$ cross section	
$\gamma e^- \rightarrow e^- X$ and $\nu_e X$	$\mathcal{N}C$ and $\mathcal{C}C$ structure functions (polarized and unpolarized	d) OCD
$\gamma g ightarrow q ar q, \ c ar c$	gluon distribution in the photon	QUD
$\gamma\gamma ightarrow J/\psi J/\psi$	QCD Pomeron	

Being done or ready: should be ready for the writeup promised

Golden Processes

Added at/since the start of the workshop 14/9/01:

- Non-commutative QED
- eγ for ED's

Light gravitinos

Radions

Gluino production

- \bigcirc H $\rightarrow\gamma\gamma$ (US groups)
- $H \rightarrow H+H-$ (US groups) CP analyses in the Higgs sector

More (as yet uncovered/lower priority at present) $e\gamma \rightarrow e^*$ Leptoquarks Strong WW scattering $e\gamma \rightarrow eH$

As always: still room for volunteers (continuation of workshop)

Conclusions

Many detailed studies on the physics case for the photon collider

- Progress on R&D for a photon collider (see J. Gronberg)
- Good progress on background studies, tools for studies etc.
- Detail results on physics
 - QCD studies on the structure of the photon and $\sigma(\gamma\gamma)_{tot}$
 - The light Higgs results confirmed and extended $\rightarrow \Delta \Gamma_{\gamma\gamma} / \Gamma_{\gamma\gamma} \sim 2\%$
 - Higgs channels in WW,ZZ studied $\rightarrow \Delta \Gamma_{\gamma\gamma} / \Gamma_{\gamma\gamma} \sim 3-10\%$
 - H/A study confirms reach for high masses, beyond e+e-
 - Potential for CP, Higgs spin etc \rightarrow studies starting
 - Detailed study of the TGCs $\rightarrow \lambda$ measurement competitive with e+e-
 - Good sensitivity to SUSY and Extra Dimensions/alternative theories

A photon collider needs second interaction point and R&D (laser...) Is it worthwile? Jeju (LCWS2002) panel discusion: System

 $\gamma\gamma/e\gamma$ collider confirmed as an exciting option for a LC!