Conversion decays of light vector mesons and QED process $e^+e^- \rightarrow e^+e^-\gamma\gamma$
in the energy region $2E \sim 1$ GeV

Alexandr E. Obrazovsky

Budker Institute of Nuclear Physics, Novosibirsk

International workshop on e^+e^- collisions from Phi to Psi,
April 7–10, 2008, Frascati
Conversion decays and double bremsstrahlung: what do they have in common?
Conversion decays and double bremsstrahlung: what do they have in common?

1. **Electromagnetic interaction:**
Conversion decays and double bremsstrahlung: what do they have in common?

1. Electromagnetic interaction:
 - For hadrons: simpler than strong interaction
Electromagnetic interaction:
- For hadrons: simpler than strong interaction
- Electromagnetic structure of $V \rightarrow P \gamma^*$ transition
Conversion decays and double bremsstrahlung: what do they have in common?

1. Electromagnetic interaction:
 - For hadrons: simpler than strong interaction
 - Electromagnetic structure of $V \rightarrow P \gamma^*$ transition
 - For high-order QED: theory test at high q^2 ($q^2 \sim s$)
Conversion decays and double bremsstrahlung: what do they have in common?

1. **Electromagnetic interaction:**
 - For hadrons: simpler than strong interaction
 - Electromagnetic structure of $V \rightarrow P \gamma^*$ transition
 - For high-order QED: theory test at high q^2 ($q^2 \sim s$)

2. **Equal final state signature:** 2 photons and 2 charged particles
Conversion decays and double bremsstrahlung: what do they have in common?

1. **Electromagnetic interaction:**
 - For hadrons: simpler than strong interaction
 - Electromagnetic structure of $V \rightarrow P\gamma^*$ transition
 - For high-order QED: theory test at high q^2 ($q^2 \sim s$)

2. **Equal final state signature:** 2 photons and 2 charged particles
 - Equal final state in case of $\gamma^* \rightarrow e^+e^-$ conversion
Conversion decays and double bremsstrahlung: what do they have in common?

1. Electromagnetic interaction:
 - For hadrons: simpler than strong interaction
 - Electromagnetic structure of $V \rightarrow P \gamma^*$ transition
 - For high-order QED: theory test at high q^2 ($q^2 \sim s$)

2. Equal final state signature: 2 photons and 2 charged particles
 - Equal final state in case of $\gamma^* \rightarrow e^+e^-$ conversion
 - Background for each other
Conversion decays of light vector mesons

Conversion decay \((l = e, \mu)\)

\[4m_i^2 \leq q^2 \leq (m_V - m_P)^2\]

Radiative decay

\[q^2 = 0, \quad \Gamma \sim |f(0)|^2\]

\[
\frac{d}{dq^2} \frac{\Gamma(V \to Pl^+l^-)}{\Gamma(V \to P\gamma)} = \frac{\alpha}{3\pi} \frac{|F(q^2)|^2}{q^2} \left(1 + \frac{2m_i^2}{q^2}\right) \sqrt{1 - \frac{4m_i^2}{q^2}} \times \\
\times \left(\left(1 + \frac{q^2}{m_V^2 - m_P^2}\right)^2 - \frac{4q^2m_V^2}{(m_V^2 - m_P^2)^2}\right)^{\frac{3}{2}}, \text{ where } F(q^2) = \frac{f(q^2)}{f(0)}
\]

In pole approximation, \(F(q^2) = \frac{1}{1 - q^2/\Lambda^2}\)
Branching fractions: experimental results

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Upper Limit</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho^0 \rightarrow \pi^0 e^+ e^-$</td>
<td>$< 1.2 \cdot 10^{-5}$</td>
<td>SND08</td>
</tr>
<tr>
<td>$\rho^0 \rightarrow \eta e^+ e^-$</td>
<td>$< 7 \cdot 10^{-6}$</td>
<td>CMD05</td>
</tr>
<tr>
<td>$\omega \rightarrow \pi^0 e^+ e^-$</td>
<td>$(7.7 \pm 0.6) \cdot 10^{-4}$</td>
<td>SND08</td>
</tr>
<tr>
<td>$\omega \rightarrow \eta e^+ e^-$</td>
<td>$< 1.1 \cdot 10^{-5}$</td>
<td>CMD05</td>
</tr>
<tr>
<td>$\phi \rightarrow \pi^0 e^+ e^-$</td>
<td>$(1.12 \pm 0.28) \cdot 10^{-5}$</td>
<td>PDG06</td>
</tr>
<tr>
<td>$\phi \rightarrow \eta e^+ e^-$</td>
<td>$(1.15 \pm 0.10) \cdot 10^{-4}$</td>
<td>PDG06</td>
</tr>
<tr>
<td>$\phi \rightarrow \eta \mu^+ \mu^-$</td>
<td>$< 9.4 \cdot 10^{-6}$</td>
<td>CMD01</td>
</tr>
</tbody>
</table>

Statistical errors
- best $\sim 7\%$
- typical $\sim 10\%$

Systematic errors
- best $\sim 5\%$
- typical $\lesssim 10\%$

In many measurements, $\sigma_{sys} \ll \sigma_{stat}$
Branching fractions: comparison with theory

<table>
<thead>
<tr>
<th>Process</th>
<th>Branching Fraction</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho^0 \to \pi^0 e^+ e^-)</td>
<td>(< 1.2 \cdot 10^{-5})</td>
<td>Exp.</td>
</tr>
<tr>
<td>(</td>
<td>\rho^0</td>
<td>= 5.1 \cdot 10^{-6})</td>
</tr>
<tr>
<td>(</td>
<td>\rho^0</td>
<td>= 4.1 \cdot 10^{-6})</td>
</tr>
<tr>
<td>(</td>
<td>\rho^0</td>
<td>= (6.1 \pm 0.5) \cdot 10^{-6})</td>
</tr>
<tr>
<td>(</td>
<td>\rho^0</td>
<td>= (4.0 \pm 0.5) \cdot 10^{-6})</td>
</tr>
<tr>
<td>(\omega \to \eta e^+ e^-)</td>
<td>(< 1.1 \cdot 10^{-5})</td>
<td>Exp.</td>
</tr>
<tr>
<td>(</td>
<td>\omega</td>
<td>= 3.5 \cdot 10^{-6})</td>
</tr>
<tr>
<td>(</td>
<td>\omega</td>
<td>= 6 \cdot 10^{-6})</td>
</tr>
<tr>
<td>(</td>
<td>\omega</td>
<td>= (3.6 \pm 0.5) \cdot 10^{-6})</td>
</tr>
<tr>
<td>(</td>
<td>\omega</td>
<td>= (6.1 \pm 2.2) \cdot 10^{-6})</td>
</tr>
<tr>
<td>(\rho^0 \to \eta e^+ e^-)</td>
<td>(< 7 \cdot 10^{-6})</td>
<td>Exp.</td>
</tr>
<tr>
<td>(</td>
<td>\rho^0</td>
<td>= 2.1 \cdot 10^{-6})</td>
</tr>
<tr>
<td>(</td>
<td>\rho^0</td>
<td>= 2.7 \cdot 10^{-6})</td>
</tr>
<tr>
<td>(</td>
<td>\rho^0</td>
<td>= (2.0 \pm 0.3) \cdot 10^{-6})</td>
</tr>
<tr>
<td>(</td>
<td>\rho^0</td>
<td>= (2.6 \pm 0.9) \cdot 10^{-6})</td>
</tr>
<tr>
<td>(\phi \to \pi^0 e^+ e^-)</td>
<td>((1.12 \pm 0.28) \cdot 10^{-5})</td>
<td>Exp.</td>
</tr>
<tr>
<td>(</td>
<td>\phi</td>
<td>= 1.1 \cdot 10^{-5})</td>
</tr>
<tr>
<td>(</td>
<td>\phi</td>
<td>= 1.6 \cdot 10^{-5})</td>
</tr>
<tr>
<td>(</td>
<td>\phi</td>
<td>= (1.4 \pm 0.1) \cdot 10^{-5})</td>
</tr>
<tr>
<td>(\phi \to \eta e^+ e^-)</td>
<td>((1.15 \pm 0.10) \cdot 10^{-4})</td>
<td>Exp.</td>
</tr>
<tr>
<td>(</td>
<td>\phi</td>
<td>= 1.1 \cdot 10^{-4})</td>
</tr>
<tr>
<td>(</td>
<td>\phi</td>
<td>= 1.1 \cdot 10^{-4})</td>
</tr>
<tr>
<td>(</td>
<td>\phi</td>
<td>= (1.1 \pm 0.1) \cdot 10^{-4})</td>
</tr>
<tr>
<td>(</td>
<td>\phi</td>
<td>= (1.1 \pm 0.3) \cdot 10^{-4})</td>
</tr>
<tr>
<td>(\omega \to \pi^0 \mu^+ \mu^-)</td>
<td>((9.6 \pm 2.3) \cdot 10^{-5})</td>
<td>Exp.</td>
</tr>
<tr>
<td>(</td>
<td>\omega</td>
<td>= 4.9 \cdot 10^{-5})</td>
</tr>
<tr>
<td>(</td>
<td>\omega</td>
<td>= 9.2 \cdot 10^{-5})</td>
</tr>
<tr>
<td>(</td>
<td>\omega</td>
<td>= (7.9 \pm 0.3) \cdot 10^{-5})</td>
</tr>
</tbody>
</table>

Abbreviations:
- **PLP**: Point-like particles (\(F=1 \))
- **VDM**: Vector dominance model
- **HLS**: Hidden local symmetry
- **LQCD**: Lattice QCD

Alexandr E. Obrazovsky

Conversion decays and double bremsstrahlung
Transition form factors: experimental results

\[\omega \rightarrow \pi^0 \gamma^* \text{ transition} \]

\[\phi \rightarrow \eta \gamma^* \text{ transition} \]

\[|F_{\omega\pi}(q)|^2 \]

\[|F_{\phi\eta}(q)|^2 \]

- **SERP81** \((\omega \rightarrow \pi^0 \mu^+ \mu^-)\)
- **CMD05** \((\omega \rightarrow \pi^0 e^+ e^-)\)
- **SND08** \((\omega \rightarrow \pi^0 e^+ e^-)\)

- **SND01** \((\phi \rightarrow \eta e^+ e^-)\)
Transition form factors: comparison with theory

\[|F_{\pi\gamma^*}(q)|^2 \]

- Pole approximation (\(\Lambda = 653 \pm 15 \text{ MeV} \))
- DSE (Maris - Tandy)
- VDM with one \(\rho \) pole
- VDM with \(\rho \) and \(\rho' \) poles

\[|F_{\eta\gamma^*}(q)|^2 \]

- Pole approximation (\(\Lambda = 650 \pm 270 \text{ MeV} \))
- VDM with one \(\phi \) pole

\(\omega \to \pi^0\gamma^* \) transition

Not described by VDM with \(\rho \) and extended VDM with \(\rho \) and \(\rho' \)

\(\phi \to \eta\gamma^* \) transition

No preferable model due to low accuracy

New experimental data are required, especially at large \(q \)
Conversion decays: further prospects

VEPP-2M

\[\mathcal{L} \sim 10^{30} \text{ cm}^{-2}\text{s}^{-1} (2E = m_\phi) \]

Detectors: ND, SND, CMD–2

VEPP-2000

\[\mathcal{L} \sim 10^{31} \text{ cm}^{-2}\text{s}^{-1} (2E = m_\phi) \]

\[\mathcal{L} \sim 10^{32} \text{ cm}^{-2}\text{s}^{-1} (2E = 2 \text{ GeV}) \]

Detectors: SND, CMD–3

Typical accuracy

- Statistical \(\sim 10\% \), systematic \(\sim 10\% \)

Systematic error determined by

- Photon conversion on material before tracking system
- Close \(e^+ e^- \) tracks separation

Estimated accuracy

- \(Br \sim 10^{-4} - 10^{-5} \): statistical \(\sim 3 - 5\% \), systematic \(\approx 5\% \)
- \(Br \sim 10^{-6} \): statistical \(\sim 30\% \), systematic \(\approx 5\% \)

Improvement of systematic error

- Upgrade of tracking systems

Conversion decays of \(\phi \) meson also can be studied with KLOE at DAFNE

Alexandr E. Obrazovsky
Conversion decays and double bremsstrahlung
High-order QED processes: double bremsstrahlung $e^+e^- \rightarrow e^+e^-\gamma\gamma$
High-order QED processes:
double bremsstrahlung $e^+ e^- \rightarrow e^+ e^- \gamma \gamma$

Tests of QED:
High-order QED processes: double bremsstrahlung $e^+e^- \rightarrow e^+e^-\gamma\gamma$

- Tests of QED:
 - Small q^2: $(g_e - 2)/2$, accuracy of $3 \cdot 10^{-9}$;
High-order QED processes:
double bremsstrahlung $e^+e^- \rightarrow e^+e^-\gamma\gamma$

Tests of QED:
- Small q^2: $(g_e - 2)/2$, accuracy of $3 \cdot 10^{-9}$;
- Large q^2:
 - most of experimental data were obtained at high energies ($\gtrsim 10$ GeV);
High-order QED processes: double bremsstrahlung $e^+ e^- \rightarrow e^+ e^- \gamma \gamma$

Tests of QED:

- **Small q^2:** $(g_e - 2)/2$, accuracy of $3 \cdot 10^{-9}$;
- **Large q^2:**
 - most of experimental data were obtained at high energies ($\gtrsim 10$ GeV);
 - very scarce data at intermediate energies (~ 1 GeV) with much larger cross section;
Tests of QED:
- Small q^2: $(g_e - 2)/2$, accuracy of $3 \cdot 10^{-9}$;
- Large q^2:
 - most of experimental data were obtained at high energies ($\gtrsim 10$ GeV);
 - very scarce data at intermediate energies (~ 1 GeV) with much larger cross section;

Background for $e^+ e^- \rightarrow$ hadrons, e.g. $e^+ e^- \rightarrow \pi^+ \pi^- \pi^0$ and conversion decays, e.g. $\omega \rightarrow \pi^0 e^+ e^-$;
Tests of QED:
- Small q^2: $(g_e - 2)/2$, accuracy of 3×10^{-9};
- Large q^2:
 - most of experimental data were obtained at high energies ($\gtrsim 10 \text{ GeV}$);
 - very scarce data at intermediate energies ($\sim 1 \text{ GeV}$) with much larger cross section;

Background for $e^+ e^- \rightarrow$ hadrons, e.g. $e^+ e^- \rightarrow \pi^+ \pi^- \pi^0$ and conversion decays, e.g. $\omega \rightarrow \pi^0 e^+ e^-$;

Encouragement for development of calculational techniques and precise MC generators;
High-order QED processes:
double bremsstrahlung \(e^+e^- \rightarrow e^+e^-\gamma\gamma \)

1. **Tests of QED:**
 - **Small** \(q^2 \): \((g_e - 2)/2 \), accuracy of \(3 \cdot 10^{-9} \);
 - **Large** \(q^2 \):
 - most of experimental data were obtained at high energies (\(\gtrsim 10 \) GeV);
 - very scarce data at intermediate energies (\(\sim 1 \) GeV) with much larger cross section;

2. **Background for** \(e^+e^- \rightarrow \) hadrons, e.g. \(e^+e^- \rightarrow \pi^+\pi^-\pi^0 \) and conversion decays, e.g. \(\omega \rightarrow \pi^0 e^+e^- \);

3. **Encouragement** for development of calculational techniques and precise MC generators;

4. **Search** for exotics (heavy leptons, axions etc.).
$e^+e^- \rightarrow e^+e^-\gamma\gamma$: QED tests

<table>
<thead>
<tr>
<th>Date</th>
<th>Detector</th>
<th>Collider</th>
<th>$2E$, GeV</th>
<th>N_{evt}</th>
<th>$\sigma_{\text{exp}}/\sigma_{\text{th}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>JADE</td>
<td>PETRA</td>
<td>34.4</td>
<td>176</td>
<td>$1.035 \pm 0.078 \pm 0.030$</td>
</tr>
<tr>
<td>1989</td>
<td>ASP</td>
<td>PEP</td>
<td>29</td>
<td>931</td>
<td>$0.94 \pm 0.03 \pm 0.03$</td>
</tr>
<tr>
<td>1989</td>
<td>MARK II</td>
<td>PEP</td>
<td>29</td>
<td>41</td>
<td>$0.995 \pm 0.075 \pm 0.154$</td>
</tr>
<tr>
<td>2000</td>
<td>SND</td>
<td>VEPP-2M</td>
<td>0.98 – 1.04</td>
<td>649</td>
<td>$0.998 \pm 0.085 \pm 0.061$</td>
</tr>
</tbody>
</table>

$e^+e^- \rightarrow e^+e^-\gamma\gamma$: QED tests and search for exotics

<table>
<thead>
<tr>
<th>Date</th>
<th>Detector</th>
<th>Collider</th>
<th>$2E$, GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>AMY</td>
<td>TRISTAN</td>
<td>50 – 56</td>
</tr>
<tr>
<td>1991</td>
<td>ND</td>
<td>VEPP-2M</td>
<td>0.6 – 1.4</td>
</tr>
<tr>
<td>1993</td>
<td>ALEPH</td>
<td>LEP</td>
<td>91.2</td>
</tr>
<tr>
<td>1993</td>
<td>L3</td>
<td>LEP</td>
<td>91.2</td>
</tr>
<tr>
<td>1993</td>
<td>OPAL</td>
<td>LEP</td>
<td>91.2</td>
</tr>
<tr>
<td>2008</td>
<td>SND</td>
<td>VEPP-2M</td>
<td>0.36 – 1.38</td>
</tr>
</tbody>
</table>
$e^+ e^- \to e^+ e^- \gamma \gamma$: SND results

SND00

$36^\circ \leq \theta_i \leq 144^\circ$, $\Delta \varphi \geq 5^\circ$, $\alpha_{ij} \geq 20^\circ$, $E_{min} = 10$ MeV, $\omega_{min} = 20$ MeV

Statistical error: 9%
Systematic error: 6%

SND08 preliminary

$20^\circ \leq \theta_i \leq 160^\circ$, $\Delta \varphi \geq 9^\circ$, $\alpha_{ij} \geq 9^\circ$, $E_{min} = 10$ MeV, $\omega_{min} = 10$ MeV

Statistical error: 8%
Systematic error: to be determined
High-order QED: further prospects

VEPP-2M
\[\mathcal{L} \sim 10^{30} \text{ cm}^{-2}\text{s}^{-1}(2E = m_\phi) \]
Detectors: ND, SND

Typical accuracy
- Statistical \(\lesssim 10\% \)
- Systematic \(\lesssim 10\% \)

Systematic error determined by
Normalization uncertainty

VEPP-2000
\[\mathcal{L} \sim 10^{31} \text{ cm}^{-2}\text{s}^{-1}(2E = m_\phi) \]
\[\mathcal{L} \sim 10^{32} \text{ cm}^{-2}\text{s}^{-1} (2E = 2 \text{ GeV}) \]
Detectors: SND, CMD-3

Estimated accuracy
- 4-th order: Statistical \(\sim 3 - 5\% \), systematic \(\sim 5\% \)
- 5-th order: Statistical \(\sim 30\% \), systematic \(\sim 10\% \)

Improvement of systematic error
- Upgrade of tracking systems
- Precise simulation of high-order QED

Alexander E. Obrazovsky
Conversion decays and double bremsstrahlung
Conclusions: conversion decays

1. 8 conversion decay modes of light vector mesons ρ, ω, ϕ has been studied experimentally. Typical accuracy of recent measurements is $\sim 10\%$ (both for statistical and systematic errors). Experimental data on branching fractions are in good agreement with theoretical predictions.

2. $\omega \rightarrow \pi^0 \gamma^*$ and $\phi \rightarrow \eta \gamma^*$ transition form factors were measured. Experimental data on $\omega \rightarrow \pi^0 \gamma^*$ disagree with VDM and extended VDM at large q^2. Accuracy of $\phi \rightarrow \eta \gamma^*$ measurement is insufficient to make choice between theoretical models. New form factor measurements are required, especially at large q^2.

3. Estimates of conversion decay accuracy in future experiments at VEPP-2000 collider: $3 - 5\%$ for statistical error and 5% for systematic error ($Br \sim 10^{-4} - 10^{-5}$), 30% for statistical error and 10% for systematic error ($Br \sim 10^{-6}$). Conversion decays of ϕ meson can also be studied with KLOE at DAΦNE.
Conclusions: $e^+e^- \rightarrow e^+e^-\gamma\gamma$

1. Double bremsstrahlung process $e^+e^- \rightarrow e^+e^-\gamma\gamma$ has been studied in 7 experiments at high energies ($2E \gtrsim 10$ GeV) and 3 experiments at intermediate energies ($2E \sim 1$ GeV). Typical accuracy at intermediate energies is $\sim 10\%$ (both for statistical and systematic errors).

2. No deviations from QED is found within limits of measurement errors.

3. Estimates of high-order QED accuracy in future experiments at VEPP-2000 collider: $3 - 5\%$ for statistical error and 5% for systematic error (4-th order QED), 30% for statistical error and 10% for systematic error (5-th order QED).
Appendix: spectrum of l^+l^- invariant masses
Appendix: CMD-2 detector

Drift chamber

\[\sigma_{R\phi} = 250 \, \mu m \]

Barrel CsI calorimeter

\[\sigma_E/E = 9 \% \]

End-cap BGO calorimeter

\[\sigma_E/E = 4-9 \% \]

Solid angle

\[\Omega/4\pi = 0.92 \]

1–vacuum chamber; 2–drift chamber; 3– Z–chamber; 4–main solenoid; 5–compensating solenoid; 6–BGO endcap calorimeter; 7–CsI barrel calorimeter; 8–muon range system; 9–iron yoke; 10–storage ring lenses
Appendix: SND detector

Tracking system: 2 — drift chambers, 3 — cylindrical scintillation counter.
Calorimeter: 6 — NaI(Tl) crystals, 7 — vacuum phototriods.
Muon system: 9 — streamer tubes, 11 — scintillation counters.

<table>
<thead>
<tr>
<th>Tracking system</th>
<th>NaI(Tl) calorimeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_\theta = 0.5^\circ$, $\sigma_\varphi = 2^\circ$</td>
<td>$\sigma_E/E = 4.2% / \sqrt[4]{E(\text{GeV})}$, $\sigma_\varphi = 1.5^\circ$</td>
</tr>
<tr>
<td>$\Omega/4\pi = 0.95$</td>
<td>$\Omega/4\pi = 0.9$</td>
</tr>
</tbody>
</table>
Theoretical works on conversion decays

Calculation of branching fractions in vector dominance model

Hidden local symmetry model with isospin/SU(3) breaking terms

Lattice QCD calculation of branching fractions

Form factor calculation using Dyson-Schwinger equations