Prospects of γ-γ physics at DaΦne-2

Dario Moricciani on behalf of KLOE-2 collaboration
Summary of the talk

- Physics motivation
- DaΦne-2 constraint
- Tagger requirement

Conclusion
The σ meson case 1/2

cleanest channel to assess existence & nature

$(2q \text{ vs } 4q)$ of the σ is $\gamma\gamma \rightarrow \pi^0\pi^0$ at low energy

ChPT data affected by large uncertainties

Nguyen, Piccinini, Polosa, EPJC 47, 65 (2006)
Mass and Width of the Lowest Resonance in QCD

I. Caprini

National Institute of Physics and Nuclear Engineering, Bucharest, R-077125 Romania

G. Colangelo and H. Leutwyler

Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

(Received 29 December 2005; published 5 April 2006)

We demonstrate that near the threshold, the $\pi\pi$ scattering amplitude contains a pole with the quantum numbers of the vacuum—commonly referred to as the σ—and determine its mass and width within small uncertainties. Our derivation does not involve models or parametrizations but relies on a straightforward calculation based on the Roy equation for the isoscalar S wave.

\[M_\sigma = 441^{+16}_{-8} \text{ MeV}, \quad \Gamma_\sigma = 544^{+18}_{-25} \text{ MeV}. \]

(9)
Why we need tagging ... at 510 MeV

Estimated yields

<table>
<thead>
<tr>
<th>channel</th>
<th>Total Production ($\mathcal{L} = 10$ fb$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e^+e^- \rightarrow e^+e^-\pi^0$</td>
<td>4×10^6</td>
</tr>
<tr>
<td>$e^+e^- \rightarrow e^+e^-\eta$</td>
<td>10^6</td>
</tr>
<tr>
<td>$e^+e^- \rightarrow e^+e^-\pi^+\pi^-$</td>
<td>2×10^6</td>
</tr>
<tr>
<td>$e^+e^- \rightarrow e^+e^-\pi^0\pi^0$</td>
<td>2×10^4</td>
</tr>
</tbody>
</table>

Background from ϕ decays

<table>
<thead>
<tr>
<th>decay mode</th>
<th>esc.particle</th>
<th>events</th>
<th>bckg to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_S(\pi^0\pi^0)K_L$</td>
<td>K_L</td>
<td>$\sim 10^9$</td>
<td>$\pi^0\pi^0$</td>
</tr>
<tr>
<td>$K_S(\pi^+\pi^-)K_L$</td>
<td>K_L</td>
<td>$\sim 2 \times 10^9$</td>
<td>$\pi^+\pi^-$</td>
</tr>
<tr>
<td>$\pi^+\pi^-\pi^0$</td>
<td>π^0</td>
<td>$\sim 10^9$</td>
<td>π^0</td>
</tr>
<tr>
<td>$\eta(\gamma\gamma)\gamma$</td>
<td>γ</td>
<td>$\sim 10^8$</td>
<td>η</td>
</tr>
<tr>
<td>$\pi^0(\gamma\gamma)\gamma$</td>
<td>γ</td>
<td>$\sim 5 \times 10^8$</td>
<td>π^0</td>
</tr>
</tbody>
</table>

- additional (sizable) bckgs from non ϕ decays (ISR and continuum processes)
- kinematics cut (mainly from P_T of $\pi\pi$) → rejection factor < 100

hopeless w/o tagging of the scattered e^\pm
ДаΦне-2 for Siddharta run
DaΦne --> DaΦne-2

Half IR1 Magnetic Layout

Old layout

Splitter magnet

~10 m

New layout

Crab waist sextupoles

Compensator solenoids not installed for the SIDDHARTA run

$\alpha = 0.071 \text{ rd}$

$\theta_{IP} = 0.025 \text{ rd}$
Interaction point for Siddharta run

Tagger position
Schematic view for next test

Plastic veto

$E_e = (190, 210) \text{ MeV}$
3D View
Tagging - by Graal experiment

2+5 plastic scintillators

BC418 + BC800 + Hamamatsu 1635

Spatial resolution: 300 µm

128 µstrip silicon detector
Tagging characteristics

Spatial resolution: 300 mm
128 mstrip silicon detector

Final time resolution ≈ 600 ps
10 plastic scintillators
Montecarlo study about tagging possible location (by BDSIM)

Magnetic lattice

200 MeV e^+
Tagging possible location

KLOE

QCAL

Compensating Magnet

Not in scale
$W_{\gamma\gamma}$ in various region

<table>
<thead>
<tr>
<th></th>
<th>LET</th>
<th>LET$_1$</th>
<th>LET$_2$</th>
<th>MET</th>
<th>HET</th>
</tr>
</thead>
<tbody>
<tr>
<td>LET</td>
<td>600 - 640</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LET$_1$</td>
<td>440 - 530</td>
<td>280 - 420</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LET$_2$</td>
<td>400 - 440</td>
<td>240 - 330</td>
<td>200 - 240</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>375 - 405</td>
<td>215 - 295</td>
<td>150 - 170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MET</td>
<td>340 - 380</td>
<td>180 - 270</td>
<td>140 - 180</td>
<td>80 - 120</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>300 - 350</td>
<td>140 - 240</td>
<td>100 - 150</td>
<td>40 - 90</td>
<td>0 - 60</td>
</tr>
</tbody>
</table>
LET and LET_1 could be enough?
Conclusion

- Prototype construction almost completed
 - Installation expected for next month
- Integration with QCAL under study
 - Different detector for tagging
- Particle tracking in progress
 - Interaction point
 - Emission angle
- Data analysis of data taken at $\sqrt{s} = 1$ GeV during KLOE run is in progress