

Update from J/r Ra Grup de F

"International Works

Work partly supported by 1

<u>First bulletin</u>

Download First bulletin as txt file

Second bulletin

Download Second bulletin as txt file

Download Final bulletin as pdf file

Conference poster (pdf file)

Motivation

KLOE Collaboration, Phys. Lett. B648 (2007) 267

Motivation

R. E. and J. Nadal, JHEP 05 (2007) 6

Purpose: to perform a phenomenological analysis of radiative $V \rightarrow P\gamma$ and $P \rightarrow V\gamma$ decays, with $V=\rho$, K^* , ω , ϕ and $P=\pi$, K, η , η' , aimed at determining the gluonic content of the η and η' wave functions

Conclusions:

- i) assuming $Z_{\eta} = Z_{\eta'} = 0$ from the beginning, we got $\phi_{P} = (41.1 \pm 1.1)^{\circ}$ with $\chi^{2}/d.o.f. = 4.4/5$
- ii) accepting the absence of gluonium for the η meson, the gluonic content of the η ' wave function amounts to $|\phi_{\eta'G}| = (12\pm13)^\circ$ or $(Z_{\eta'})^2 = 0.04\pm0.09$ and the η - η ' mixing angle is found to be $\phi_P = (41.4\pm1.3)^\circ$ $\chi^2/d.o.f. = 4.2/4$
- iii) accepting the absence of gluonium for the η ' meson, the gluonic content of the η wave function amounts to $|\phi_{\eta G}| \simeq 0^{\circ}$ or $(Z_{\eta})^2 = 0.00 \pm 0.12$ and the η - η ' mixing angle is found to be $\phi_{P} = (41.5 \pm 1.3)^{\circ}$ $\chi^2/d.o.f. = 4.4/4$

The current experimental data on VP γ transitions indicated within our model a negligible gluonic content for the η and η ' mesons

Purpose: to perform a phenomenological analysis of $J/\psi \rightarrow VP$ decays, with $V=\rho$, K^* , ω , ϕ and $P=\pi$, K, η , η' , aimed at determining the gluonic content of the η and η' wave functions

Why? to confirm or not the gluonic content of the η ' wave function

Feasible? yes, because we have at our disposal all the needed experimental information

Outline:

- Notation
- Experimental input
- A model for $J/\psi \rightarrow VP$ transitions
- Preliminary results
- Summary and conclusions

Notation

We work in a basis consisting of the states

$$|\eta_q\rangle \equiv \frac{1}{\sqrt{2}}|u\bar{u} + d\bar{d}\rangle \qquad |\eta_s\rangle = |s\bar{s}\rangle \qquad |G\rangle \equiv |\text{gluonium}\rangle$$

The physical states η and η' are assumed to be the linear combinations

$$|\eta\rangle = X_{\eta}|\eta_{q}\rangle + Y_{\eta}|\eta_{s}\rangle + Z_{\eta}|G\rangle , |\eta'\rangle = X_{\eta'}|\eta_{q}\rangle + Y_{\eta'}|\eta_{s}\rangle + Z_{\eta'}|G\rangle ,$$

with $X_{\eta(\eta')}^2 + Y_{\eta(\eta')}^2 + Z_{\eta(\eta')}^2 = 1$ and thus $X_{\eta(\eta')}^2 + Y_{\eta(\eta')}^2 \le 1$

A significant gluonic admixture in a state is possible only if

$$Z_{\eta(\eta')}^2 = 1 - X_{\eta(\eta')}^2 - Y_{\eta(\eta')}^2 > 0$$

Assumptions:

- no mixing with π^0 (isospin symmetry)
- no mixing with η_c states
- no mixing with radial excitations

Notation

In absence of gluonium (standard picture)

$$Z_{\eta(\eta')} \equiv 0$$

$$|\eta\rangle = \cos \phi_P |\eta_q\rangle - \sin \phi_P |\eta_s\rangle$$

$$|\eta'\rangle = \sin \phi_P |\eta_q\rangle + \cos \phi_P |\eta_s\rangle$$
with
$$X_{\eta} = Y_{\eta'} \equiv \cos \phi_P$$
and
$$X_{\eta(\eta')}^2 + Y_{\eta(\eta')}^2 = 1$$

$$X_{\eta'} = -Y_{\eta} \equiv \sin \phi_P$$

where ϕ_P is the η - η ' mixing angle in the quark-flavour basis related to its octet-singlet analog through

$$\theta_P = \phi_P - \arctan\sqrt{2} \simeq \phi_P - 54.7^\circ$$

Similarly, for the vector states ω and ϕ the mixing is given by

$$\begin{aligned} |\omega\rangle &= \cos \phi_V |\omega_q\rangle - \sin \phi_V |\phi_s\rangle \\ |\phi\rangle &= \sin \phi_V |\omega_q\rangle + \cos \phi_V |\phi_s\rangle \end{aligned}$$

where ω_q and ϕ_s are the analog non-strange and strange states of η_q and η_s , respectively.

Table 1

Experimental $J/\psi \rightarrow VP$ branching ratios from PDG [6] and results of our fits. BR's for all VP channels are in 10^{-3}

BR×10-3	PDG'97 *	PDG'07		
$ ho\pi$	12.8 ± 1.0	169+15	BABAR Coll., Phys. Rev. D	70 (04) 072004
$K^{*+}K^{-} + c.c.$	5.0 ± 0.4	=	BES Coll., Phys. Rev. D	70 (04) 012005
$K^{*0}\bar{K}^0 + c.c.$	4.2 ± 0.4	=		
ωη	1.58 ± 0.16	1.74±0.20	BABAR Coll., Phys. Rev. D	73 (06) 052003
$\omega \eta'$	0.167 ± 0.025	0.182±0.021	BES Coll., Phys. Rev. D	73 (06) 052007
$\phi \eta$	0.65 ± 0.07	0.74±0.08		
$\phi\eta'$	0.33 ± 0.04	0.40±0.07	BES Coll., Phys. Rev. D	71 (05) 032003
$ ho\eta$	0.193 ± 0.023	=		
$ ho\eta^\prime$	0.105 ± 0.018	=		
$\omega\pi^0$	0.42 ± 0.06	0.45±0.05	BES Coll., Phys. Rev. D	73 (06) 052007
$\phi\pi^0$	< 0.0068 <	<0.0064 C.L. 90	D% BES Coll., Phys. Rev. D	71 (05) 032003
ę	* MARK III Coll Phys Roy D	38 (88) 2695	1.0005GHIEDOVO305E	1.075 ± 0.038
8 S	DM2 Coll. Phys. Rev. D	JO (00) 2075	0.097 ± 0.031	0.112 ± 0.027
e	Driz Coll., Fliys. Rev. D	1 (70) 1307	0.117 ± 0.005 \wedge	new 10 E 0.005
θ_{e}			1.29 ± 0.16	1.35 ± 0.16
r		old Ω π	-0.148 ± 0.009	-0.151 ± 0.009
X_{η}			0.794 ± 0.014	AUBERT,B 0.786 AB 0.0786
in [6], the upper 1	imit for $RR(d\sigma)$ has b	neen ass	ociated to ""	OHH BES 11.4 BAI 96D BES 5.8 COFFMAN 88 MRK3 2.0 FRANKLIN 83 MRK2 1.7 ALEXANDER 78 PLUT 0.1 BRANDELIK 78B DASP 3.0
ished by $[3]$ and	the nine remaining R	R's act	nieved only if discon	$\frac{1}{12} = \frac{1}{12} $

listed in [6]; the upper limit for $BR(\phi\pi)$ has been established by [3]; and the nine remaining *BR*'s, with relative experimental errors ranging from about 8 to 17 %, come from Refs. [3] and [4]. Altogether they constitute an excellent and exhaustive set of data associated to " nnected telling" (Ref $\frac{78B}{1.7}$ a good fit achieved only if disconnected" (Ref $\frac{50.5}{0.001}$ 3]) or, equalently, "doubly OZI-violating" (Ref. [4]) diagram are introduced too; their contribution to the amplit will be denoted by rg, with r < 1 being the rate • A model for $J/\psi \rightarrow VP$ transitions

Amplitudes:

strong singly disconnected (SOZI) \equiv g electromagnetic singly disconnected (eSOZI) \equiv e

strong doubly disconnected (DOZI) \equiv rg

DOZI for $J/\psi \rightarrow V$ +Glueball \equiv r'g

• A model for $J/\psi \rightarrow VP$ transitions

Amplitudes:

Process	Amplitude			
$ ho^+\pi^-, ho^0\pi^0, ho^-\pi^+$	g + e			
$K^{*+}K^{-}, K^{*-}K^{+}$	$g(1-s) + e(1+s_e)$			
$K^{*0}\overline{K}^{0},\overline{K}^{*0}K^{0}$	$g(1-s)-e(2-s_e)$			
$\omega \eta$	$(g+e)X_{\eta} + \sqrt{2}rg[\sqrt{2}X_{\eta} + (1-s_{\rho})Y_{\eta}] + \sqrt{2}r'gZ_{\eta}$			
$\omega \eta'$	$(g+e)X_{\eta'} + \sqrt{2}rg[\sqrt{2}X_{\eta'} + (1-s_p)Y_{\eta'}] + \sqrt{2}r'gZ_{\eta'}$			
$\phi\eta$	$[g(1-2s)-2e(1-s_e)]Y_{\eta}+rg(1-s_v)[\sqrt{2}X_{\eta}+(1-s_p)Y_{\eta}]+r'q(1-s_v)$			
$\phi\eta'$	$[g(1-2s)-2e(1-s_e)]Y_{\eta'}+rg(1-s_v)[\sqrt{2}X_{\eta'}+(1-s_p)Y_{\eta'}]+r'g(1-s_p)Y_{\eta'}]$			
$ ho^0\eta$	$3eX_{\eta}$			
$ ho^0 \eta'$	$3eX_{\eta'}$			
$\omega \pi^0$	3 <i>e</i>			
$\phi \pi^0$	0			

TABLE VIII. General parametrization of amplitudes for $J/\psi \rightarrow P + V$.

A. Seiden et al., Phys. Rev. D38 (1988) 824

s, s_e , s_p and s_v are SU(3)-breaking parameters

Simplifications of our analysis:

- i) second order SU(3)-breaking contributions s_p and s_v are neglected
- ii) $x \equiv 1-s_e = m/m_s$ with $m_s/m = 1.24 \pm 0.07$ and $\varphi_V = (3.2 \pm 0.1)^\circ$
- iii) $Z_{\eta}=0$ from $V \rightarrow P\gamma$ and $P \rightarrow V\gamma$ decays R. E. and J. Nadal, JHEP 05 (2007) 6

Remarks:

- the effect of second order SU(3)-breaking contributions s_p and s_v is negligible
- the same fits with the pion modes removed are slightly better
- the same fits with the old data are worse, $\chi^2/d.o.f.=7.3/4$ vs. $\chi^2/d.o.f.=3.4/4$ for instance

• Summary and preliminary conclusions

We have performed an updated phenomenological analysis of an accurate and exhaustive set of $J/\psi \rightarrow VP$ decays with the purpose of determining the quark and gluon content of the η and η ' mesons

- I) The current experimental data on $J/\psi \rightarrow VP$ decays are described in terms of one mixing angle in a consistent way
- 2) Accepting the absence of gluonium for the η ' meson, the η - η ' mixing angle is found to be $\phi_P = (40.2 \pm 2.4)^\circ$ or $\theta_P = (-14.5 \pm 2.4)^\circ$, in agreement with recent phenomenological estimates
- 3) The values found for $(Z_{\eta'})^2=0.30\pm0.20$ or $\phi_{\eta'G}=(33\pm15)^\circ$ suggest within the model some small gluonic component of the η'
- 3) The inclusion of the vector mixing angle (not included in previous analyses) is irrelevant
- 4) The recent values of $BR(J/\psi \rightarrow \rho \pi)$ by BABAR and BES Coll. are crucial in order to get a consistent description of data

• Euler angles

In presence of gluonium,

$$\begin{aligned} |\eta\rangle &= X_{\eta}|\eta_{q}\rangle + Y_{\eta}|\eta_{s}\rangle + Z_{\eta}|G\rangle \\ \text{glueball-like state} & |\eta'\rangle &= X_{\eta'}|\eta_{q}\rangle + Y_{\eta'}|\eta_{s}\rangle + Z_{\eta'}|G\rangle \\ |\iota\rangle &= X_{\iota}|\eta_{q}\rangle + Y_{\iota}|\eta_{s}\rangle + Z_{\iota}|G\rangle \end{aligned}$$

Normalization:

Orthogonality:

$$\begin{aligned} X_{\eta}^{2} + Y_{\eta}^{2} + Z_{\eta}^{2} &= 1 & X_{\eta}X_{\eta'} + Y_{\eta}Y_{\eta'} + Z_{\eta}Z_{\eta'} &= 0 \\ X_{\eta'}^{2} + Y_{\eta'}^{2} + Z_{\eta'}^{2} &= 1 & X_{\eta}X_{\iota} + Y_{\eta}Y_{\iota} + Z_{\eta}Z_{\iota} &= 0 \\ X_{\iota}^{2} + Y_{\iota}^{2} + Z_{\iota}^{2} &= 1 & X_{\eta'}X_{\iota} + Y_{\eta'}Y_{\iota} + Z_{\eta'}Z_{\iota} &= 0 \end{aligned}$$

3 independent parameters: ϕ_P , $\phi_{\eta G}$ and $\phi_{\eta G}$

 $\begin{pmatrix} \eta \\ \eta' \\ \iota \end{pmatrix} = \begin{pmatrix} c\phi_{\eta\eta'}c\phi_{\eta G} & -s\phi_{\eta\eta'}c\phi_{\eta G} & -s\phi_{\eta G} \\ s\phi_{\eta\eta'}c\phi_{\eta'G} - c\phi_{\eta\eta'}s\phi_{\eta'G}s\phi_{\eta G} & c\phi_{\eta\eta'}c\phi_{\eta'G} + s\phi_{\eta\eta'}s\phi_{\eta'G}s\phi_{\eta G} & -s\phi_{\eta'G}c\phi_{\eta G} \\ s\phi_{\eta\eta'}s\phi_{\eta'G} + c\phi_{\eta\eta'}c\phi_{\eta'G}s\phi_{\eta G} & c\phi_{\eta\eta'}s\phi_{\eta'G} - s\phi_{\eta\eta'}c\phi_{\eta'G}s\phi_{\eta G} & c\phi_{\eta'G}c\phi_{\eta G} \end{pmatrix} \begin{pmatrix} \eta_{q} \\ \eta_{s} \\ G \end{pmatrix}$

• Euler angles

 $\begin{aligned} X_{\eta} &= \cos \phi_P \cos \phi_{\eta G} \,, \quad X_{\eta'} &= \sin \phi_P \cos \phi_{\eta' G} - \cos \phi_P \sin \phi_{\eta G} \sin \phi_{\eta' G} \,, \\ Y_{\eta} &= -\sin \phi_P \cos \phi_{\eta G} \,, \quad Y_{\eta'} &= \cos \phi_P \cos \phi_{\eta' G} + \sin \phi_P \sin \phi_{\eta G} \sin \phi_{\eta' G} \,, \\ Z_{\eta} &= -\sin \phi_{\eta G} \,, \quad Z_{\eta'} &= -\sin \phi_{\eta' G} \cos \phi_{\eta G} \,. \end{aligned}$

In the limit $\phi_{\eta G}=0$:

$$\begin{aligned} X_{\eta} &= \cos \phi_P , \qquad Y_{\eta} &= -\sin \phi_P , \qquad Z_{\eta} &= 0 , \\ X_{\eta'} &= \sin \phi_P \cos \phi_{\eta'G} , \quad Y_{\eta'} &= \cos \phi_P \cos \phi_{\eta'G} , \quad Z_{\eta'} &= -\sin \phi_{\eta'G} . \end{aligned}$$