Status of BabaYaga@NLO and its theoretical accuracy

Carlo M. Carloni Calame

INFN & University of Southampton

International Workshop on e^+e^- collisions from Φ to Ψ Frascati, April 7-10, 2008

Outline

- Introduction
- Theoretical framework of the old and new BabaYaga (v.3.5 and BabaYaga@NLO)
- Estimate of the Bhabha theoretical accuracy
 - comparison with independent generators
 - comparison with two loop calculations
 - vacuum polarization uncertainties
 - other 2-loop (order α^2) uncertainties
- * BabaYaga@NLO for $e^+e^- \rightarrow \gamma\gamma$ and $e^+e^- \rightarrow \mu^+\mu^-$
- Conclusions

Physics motivations

• The program of low energy e^+e^- colliders requires a precise determination of the luminosity.

e.g. *R* measurement $\rightarrow (g-2)_{\mu}$ and $\alpha_{EM}(M_Z)$

 precise theoretical calculations of well known processes are mandatory

QED processes are the best choice

The original BabaYaga (v.3.5)

• it is a MCEG for $e^+e^- \rightarrow e^+e^-$, $\gamma\gamma$, $\mu^+\mu^-$, $\pi^+\pi^-$ at flavour factories, developed for luminosity measurement

C.M.C.C. et al., NPB 584 (2000)

C.M.C.C., PLB 520 (2001)

- the QED RC corrections were included with an (original) QED Parton Shower (PS), allowing for
 - 1 an *exact* solution of the QED DGLAP equation
 - 2 fully exclusive multi-photon generation (up to ∞ photons)
 - 3 natural inclusion of O(α) and higher order QED photonic corrections in leading-log (LL) approximation
- theoretical error due to missing O(α) non-log terms, not naturally reproduced by the PS. Estimated accuracies:
 - 0.5% for Bhabha
 - $\simeq \mathcal{O}(1\%)$ for $\gamma\gamma$ and $\mu^+\mu^-$

PS and exact $\mathcal{O}(\alpha)$ matrix elements (BabaYaga@NLO)

G. Balossini et al., NPB 758 (2006) 227, hep-ph/0607181

Parton Shower (*LL*) and exact $\mathcal{O}(\alpha)$ (QED NLO) matrix elements must be combined and matched. How?

- $d\sigma_{\underline{LL}}^{\infty} = \Pi(Q^2, \varepsilon) \sum_{n=0}^{\infty} \frac{1}{n!} |\mathcal{M}_{n,LL}|^2 d\Phi_n$
- $d\sigma_{LL}^{\alpha} = [1 + C_{\alpha,LL}] |\mathcal{M}_0|^2 d\Phi_0 + |\mathcal{M}_{1,LL}|^2 d\Phi_1 \equiv d\sigma_{SV}(\varepsilon) + d\sigma_H(\varepsilon)$
- $d\sigma_{exact}^{\alpha} = [1 + C_{\alpha}] |\mathcal{M}_0|^2 d\Phi_0 + |\mathcal{M}_1|^2 d\Phi_1$
- $F_{SV} = 1 + (C_{\alpha} C_{\alpha,LL})$ $F_H = 1 + \frac{|\mathcal{M}_1|^2 |\mathcal{M}_{1,LL}|^2}{|\mathcal{M}_{1,LL}|^2}$

• $d\sigma_{exact}^{\alpha} \stackrel{\text{at }\mathcal{O}(\alpha)}{=} F_{SV}(1+C_{\alpha,LL})|\mathcal{M}_0|^2 d\Phi_0 + F_H|\mathcal{M}_{1,LL}|^2 d\Phi_1$

 $d\sigma_{matched}^{\infty} = F_{SV} \prod(Q^2, \varepsilon) \sum_{n=0}^{\infty} \frac{1}{n!} \left(\prod_{i=0}^n F_{H,i} \right) |\mathcal{M}_{n,LL}|^2 d\Phi_n$

PS and exact $\mathcal{O}(\alpha)$ matrix elements (BabaYaga@NLO)

G. Balossini et al., NPB 758 (2006) 227, hep-ph/0607181

Parton Shower (*LL*) and exact $\mathcal{O}(\alpha)$ (QED NLO) matrix elements must be combined and matched. How?

- $d\sigma_{\underline{LL}}^{\infty} = \Pi(Q^2, \varepsilon) \sum_{n=0}^{\infty} \frac{1}{n!} |\mathcal{M}_{n,LL}|^2 d\Phi_n$
- $d\sigma_{LL}^{\alpha} = [1 + C_{\alpha,LL}] |\mathcal{M}_0|^2 d\Phi_0 + |\mathcal{M}_{1,LL}|^2 d\Phi_1 \equiv d\sigma_{SV}(\varepsilon) + d\sigma_H(\varepsilon)$
- $d\sigma_{exact}^{\alpha} = [1 + C_{\alpha}] |\mathcal{M}_0|^2 d\Phi_0 + |\mathcal{M}_1|^2 d\Phi_1$
- $F_{SV} = 1 + (C_{\alpha} C_{\alpha,LL})$ $F_H = 1 + \frac{|\mathcal{M}_1|^2 |\mathcal{M}_{1,LL}|^2}{|\mathcal{M}_{1,LL}|^2}$

•
$$d\sigma_{exact}^{\alpha} \stackrel{\text{at }\mathcal{O}(\alpha)}{=} F_{SV}(1+C_{\alpha,LL})|\mathcal{M}_0|^2 d\Phi_0 + F_H|\mathcal{M}_{1,LL}|^2 d\Phi_1$$

$$d\sigma_{\underline{matched}}^{\infty} = F_{SV} \Pi(Q^2, \varepsilon) \sum_{n=0}^{\infty} \frac{1}{n!} \left(\prod_{i=0}^{n} F_{H,i} \right) |\mathcal{M}_{n,LL}|^2 d\Phi_n$$

3

Contents of the matched formula

- F_{SV} and $F_{H,i}$ are infrared safe and account for missing $\mathcal{O}(\alpha)$ non-logs, avoiding double counting of LL
- $\left[\sigma_{matched}^{\infty}\right]_{\mathcal{O}(\alpha)} = \sigma_{exact}^{\alpha}$
- resummation of higher orders LL contributions preserved
- the cross section is still fully differential in the momenta of the final state particles $(e^+, e^- \text{ and } n\gamma)$
- as a by-product, part of photonic $\alpha^2 L$ included by means of terms of the type $F_{SV \mid H,i} \times LL$

G. Montagna et al., PLB 385 (1996)

• the error is shifted to $\mathcal{O}(\alpha^2)$ (NNLO, 2 loop) not infrared terms: very naively and roughly (for photonic corrections at 1 GeV)

$$\frac{1}{2}\alpha^2 L \equiv \frac{1}{2}\alpha^2 \log \frac{s}{m^2} \sim 0.5 \times 10^{-4}$$

•
$$\alpha \to \alpha(q^2) \equiv \frac{\alpha}{1 - \Delta \alpha(q^2)}$$
 $\Delta \alpha = \Delta \alpha_{e,\mu,\tau,\text{top}} + \Delta \alpha_{\text{had}}^{(5)}$

• $\Delta \alpha_{had}^{(5)}$ is a non-perturbative contribution. Evaluated with HADR5N by F. Jegerlehner. It returns also an error.

S. Eidelman and F. Jegerlehner, Z. Phys. C 67 (1995)

F. Jegerlehner, NPB Proc. Supp. 131 (2004)

- VP included both in lowest order and (at best) in one-loop diagrams ⇒ part of the 2 loop factorizable corrections are included
- Z exchange included at lowest order. Its effect can be $\mathcal{O}(0.1\%)$ at 10 GeV

Effects of RC corrections

set up	(a)	(b)	(C)	(d)
δ_{VP}	1.76	2.49	4.81	6.41
δ_{lpha}	-11.61	-14.72	-16.03	-19.57
δ_{HO}	0.39	0.82	0.73	1.44
δ^{PS}_{HO}	0.35	0.74	0.68	1.34
$\delta_{lpha^2 L}$	0.04	0.08	0.05	0.10
$\delta^{non-log}_lpha$	-0.34	-0.56	-0.34	-0.56

Table: Relative corrections (in per cent) to the Bhabha cross section

(a)
$$\sqrt{s} = 1.02 \text{ GeV}, E_{min}^{\pm} = 0.408 \text{ GeV}, 20^{\circ} < \theta_{\pm} < 160^{\circ}, \xi_{max} = 10^{\circ}$$

(b) $\sqrt{s} = 1.02 \text{ GeV}, E_{min}^{\pm} = 0.408 \text{ GeV}, 55^{\circ} < \theta_{\pm} < 125^{\circ}, \xi_{max} = 10^{\circ}$
(c) $\sqrt{s} = 10 \text{ GeV}, E_{min}^{\pm} = 4 \text{ GeV}, 20^{\circ} < \theta_{\pm} < 160^{\circ}, \xi_{max} = 10^{\circ}$
(d) $\sqrt{s} = 10 \text{ GeV}, E_{min}^{\pm} = 4 \text{ GeV}, 55^{\circ} < \theta_{\pm} < 125^{\circ}, \xi_{max} = 10^{\circ}$

Estimate of the theoretical accuracy

- switching off VP, tuned comparisons with independent calculations/approaches (Labspv, Bhwide)
 - * $\Delta\sigma/\sigma < 0.03\%$ on cross sections
 - ★ up-to-0.5% differences between BabaYaga and Bhwide only in distribution tails

this is also a test of the technical accuracy

Estimate of the theoretical accuracy

- comparison with existing perturbative 2-loop calculations
 - 1. Penin: complete virtual 2-loop photonic corrections (for $Q^2 \gg m_e^2$) plus real soft radiation

A.A. Penin, NPB 734 (2006), PLB 95 (2005)

2. Bonciani et al.: virtual $N_F = 1$ [only electron in the loops] fermionic contributions plus real soft radiation

R. Bonciani and A. Ferroglia, **PRD** 72 (2005) R. Bonciani et al., **NPB** 716 (2005), **NPB** 701 (2004), **NPB** 690 (2004), **NPB** 681 (2004), **NPB** 702 (2004), **NPB** 676 (2004), **NPB** 661 (2003), **NPB** 702 (2004)

- * the photonic and $N_F = 1 \mathcal{O}(\alpha^2)$ content of the S+V part in the **BabaYaga** matched formula can be easily extracted. The terms to be directely compared to 1. and 2. can be read out!
- \star the impact of the missing ${\cal O}(\alpha^2)$ S+V corrections can be quantified within realistic setup

Light-pair corrections (real & virtual)

• They contribute at $\mathcal{O}(\alpha^2)$, VPC (part of 2-loop $N_F = 1$) and RPC largely cancel. Not included in BabaYaga.

- To estimate the impact, VPC evaluated as in Jadach et al. ('97); Kniehl ('90); Burgers ('85); Barbieri et al. ('72); RPC evaluated in soft approximation as in Arbuzov et al. ('97)
- the correction does not exceed 0.05% in LABS ¹ and VLABS ² at 1 and 10 GeV (see Balossini et al., NPB (2006))

 2 55° < ϑ_{\pm} < 125°

C. M. Carloni Calame (INFN & Soton)

¹ $20^\circ < \vartheta_\pm < 160^\circ$

Differences from Penin & Bonciani et al.

 diff. between Penin and Bonciani et al. and the corresponding BabaYaga content, as f(ε) and g(log(m_e)). E.g. LABS at 1 GeV

- differences are infrared safe
- * $\delta\sigma(phot.)/\sigma_0 \propto \alpha^2 L$ from photonic α^2 corrections $\delta\sigma(N_F = 1)/\sigma_0 \propto \alpha^2 L^2$ from fermionic α^2 corrections
- * Numerically, in LABS and VLABS,

 $\delta\sigma(phot.) + \delta\sigma(N_F = 1) < 0.015\% \times \sigma_0$

$\Delta \alpha_{\rm had}^{(5)}$ and other ${\cal O}(\alpha^2)$ uncertainties

- $\Delta \alpha_{\text{hadr}}^{(5)}$ is affected by an error, returned by HADR5N
 - $\star\,$ the error induced on Bhabha cross section is negligible around the Φ and < 0.05% at 10 GeV
 - $\star\,$ it is larger (0.5%) around J/Ψ resonances, becoming here a limiting factor
- the 1-loop virtual corrections to the 1-photon real emission are not completely known for Bhabha (even if feasible)
 - $\star\,$ relying on the LEP experience and being the error at the $\alpha^2 L$ level, the missing corrections are $\le 0.05\%$
- the double real bremsstrahlung contribution is in principle approximated
 - observed really negligible differences with the exact matrix elements, calculated with the ALPHA (Caravaglios and Moretti ('95)) algorithm/routine

イロト イ団ト イヨト イヨト

Summary of theoretical errors

• for Bhabha cross section, within realistic setup for luminometry, the theoretical errors of BabaYaga@NLO are summarized

$ \delta^{err} $ (%)	(a)	(b)	(C)	(d)
$ \delta_{VP}^{err} $	0.01	0.00	0.02	0.04
$ \delta_{pairs}^{err} $	0.02	0.03	0.03	0.04
$ \hat{\delta}_{H,H}^{err} $	0.00	0.00	0.00	0.00
$ \delta_{phot+N_f=1}^{err} $	0.01	0.01	0.00	0.01
$ \delta^{err}_{SV,H} $	0.05	0.05	0.05	0.05
$ \delta^{err}_{total} $	0.09	0.09	0.10	0.14

Table: LABS (a) (c), VLABS (b) (d), 1.02 GeV (a) (b), 10 GeV (c) (d)

Resummation beyond α^2

 $\star\,$ with a complete 2-loop generator at hand, (leading-log) resummation beyond α^2 can be neglected?

Figure: Impact of α^2 (solid line) and resummation of higher order ($\geq \alpha^3$) (dotted) corrections on the acollinearity distribution

 \leftarrow resummation beyond α^2 still important

G. Balossini et al., arXi v: 0801. 3360 [hep-ph], accepted by PLB

- ★ the matching is now applied also to $e^+e^- \rightarrow \gamma\gamma$, relying on the 1-loop formulae in Berends and Kleiss **NPB** 186 (1981) and Berends et al. **NPB** 202 (1981)
- ★ double counting, affecting **v**.3.5, is avoided in the new approach
- e.g., E_{cms} = 1 GeV, at least 2 photons with $20^{\circ} < \vartheta_{\gamma} < 160^{\circ}$, $E_{\gamma} > 0.3$ GeV and varying the acollinearity cut

$\xi_{\gamma\gamma}$ (°)	σ_0 (nb)	$O(\alpha)_{PS}$	$O(\infty)_{PS}$	$O(\alpha)_{ex}$	$O(\infty)_{matched}$
5	329.8	302.5	304.0	304.4	305.6
10	329.8	314.3	314.8	316.3	316.6
15	329.8	320.2	320.4	322.2	322.2
20	329.8	323.6	323.6	325.6	325.4

- $\mathcal{O}(\alpha)$ non-log $\simeq 0.7\%$, now included
- \star estimated theoretical error $\leq 0.1\%$ (VP error is not present here)

$e^+e^- \rightarrow \gamma\gamma$ distributions

• photons' energy

markers = $\mathcal{O}(\alpha)$, histograms = $\mathcal{O}(\infty)$

• now the *matching* algorithm is implemented also for $\mu^+\mu^-$

- · the accuracy has still to be studied in detail
 - * probably, VP error has a larger impact here

• on integrated cross sections (setup (a) with $E_{min}^{\pm} = 0.35$ GeV), including VP effect in LO,

$$\delta_{\alpha} = -8.50\% \qquad \qquad \delta_{h.o.} = 0.64\%$$

 $e^+e^- \rightarrow \mu^+\mu^-$

Conclusions

• BabaYaga web site

http://www.pv.infn.it/hepcomplex/babayaga.html

- in the current release exact $\mathcal{O}(\alpha)$ corrections are matched with h.o. in a PS approach. The *matching* allows inclusion of some α^2 corrections for free
- the matching is now applied to $e^+e^-
 ightarrow e^+e^-,
 ightarrow \gamma\gamma$ and $ightarrow \mu^+\mu^-$
- the Bhabha theoretical error is at 2-loop order and estimated $\leq 0.15\%$, by considering
 - \star missing $\mathcal{O}(\alpha^2)$ corrections (pairs, photonic 2-loops, $N_F = 1, \dots$)
 - ⋆ vacuum polarization uncertainties
 - $\star\,$ VP induces larger errors around the charmonium resonances (J/Ψ)
- $e^+e^- \rightarrow \gamma\gamma$ is not affected by VP uncertainty, the theoretical error is estimated $\leq 0.1\%$

+ $e^+e^- \rightarrow \mu^+\mu^-$ recently implemented, accuracy not estimated yet