PHIPSI08 Laboratori Nazionali di Frascati (Roma), April 8th 2008

International Workshop on e+e- collisions from Phi to Psi

A precise new KLOE measurement of $|\mathbf{F}_{\pi}|^2$ with ISR and extraction of $a_{\mu}^{\pi\pi}$ for [0.35,0.95] GeV²

Federico Nguyen Università degli Studi and Sezione INFN Roma TRE for the KLOE Collaboration

Outline

Introduction: ISR method > Selection criteria: improvements on <u>new data</u> (242 pb⁻¹) with respect to the <u>published</u> (140 pb⁻¹) analysis > Results and comparisons > Conclusions and outlook

The cross section $\sigma_{e^+e^- \rightarrow \pi^+\pi^-}$ from ISR events

at a fixed \sqrt{s} , studying *Initial State Radiation* events, $\sigma_{e+e-\rightarrow \pi^+\pi^-}(s)$ is extracted

$$e^{-}e^{+},$$
 $s' \sim \pi^{+}$

ISR only:
$$M_{\pi\pi}^{2} \frac{d\sigma_{e^{+}e^{-} \to \pi^{+}\pi^{-}\gamma}}{dM_{\pi\pi}^{2}} = \sigma_{e^{+}e^{-} \to \pi^{+}\pi^{-}}(M_{\pi\pi}^{2}) \cdot H(M_{\pi\pi}^{2}, \theta_{\min})$$

→ EVA + PHOKHARA MC Generator
(S. Binner, J.H. Kühn, K. Melnikov, PLB459,1999)
(H.Czyż, A.Grzelińska, J.H Kühn, G.Rodrigo, EPJC27,2003)

main advantage:

no point-to-point errors on beam energy and luminosity main requirement:

precise knowledge of ISR radiative corrections

1st KLOE publication (based on 140 pb⁻¹) A. Aloisio et al., PLB606(2005)12

Federico Nguyen 08-04-2008

Selection of $\pi\pi\gamma$ events at small angle

- a) 2 tracks with 50° < θ_{track} < 130°
- b) small angle γ ($\theta_{\pi\pi} < 15^{\circ}$)

kinematics: $\vec{p}_{\gamma} = \vec{p}_{miss} = -(\vec{p}_{+} + \vec{p}_{-})$

Selection of $\pi\pi\gamma$ events: suppress background

Improvements compared to the published analysis

Trigger improvements

the main source (hardware veto of cosmic rays) of inefficiency in the published result has been removed

trigger efficiency: fractional error given by relative difference of 2 independent methods <u>from data</u> $\rightarrow 0.1\%$

Update in the Bhabha cross section: luminosity

KLOE measures L with Bhabha scattering

55° < θ < 125° acollinearity < 9° p ≥ 400 MeV

$$\int \mathcal{L} \, \mathrm{d}t = \frac{N_{obs} - N_{bkg}}{\sigma_{eff}}$$

F. Ambrosino et al. (KLOE Coll.) Eur.Phys.J.C47:589-596,2006

> generator used for σ_{eff} BABAYAGA (Pavia group):

C. M.C. Calame et al., NPB758 (2006) 22 see C.M.C. Calame's talk

new version (BABAYAGA@NLO) gives 0.7% decrease in cross section, and better accuracy: 0.1%

Systematics on Luminosity		
Theory	0.1 %	
Experiment	0.3 %	
TOTAL 0.1 % th \oplus 0.3% exp = 0.3%		

Error table and results

Background	M ² dep (0.1-0.4%)	$\sigma_{\pi\pi} = \frac{\pi \alpha^2 \beta_{\pi}^3}{2} \mathbf{F}_{\pi} ^2$
M _{trk} cuts	0.2%	$3s^{-1}$
Particle ID	0.3%	E recolution affects unf
Tracking	0.3%	Γ_{π} resolution effects uni
Trigger	0.1%	45
Acceptance	M ² dep (0.1%)	
Unfolding	0.2%	30
L3 Trigger	0.1%	25
Luminosity $(0.1_{th} \oplus 0.3_{exp})\%$	0.3%	20
experimental fractional erro	or on a _µ = 0.7%	
Radiator H	0.5%	
total fractional err	for on $a_{\mu} = 0.9\%$	$M_{\pi\pi^2}$ (GeV
	Feder 0	rico Nguyen 8-04-2008

30 1X KI OE

KLOE results on a_{μ} (1)

Dispersion integral for 2π channel in the mass range 0.35 GeV² < $M_{\pi\pi}^2$ < 0.95 GeV²

$$a_{\mu}^{\pi\pi} = \frac{1}{4\pi^3} \int_{0.35 \text{GeV}^2}^{0.95 \text{GeV}^2} \sigma(e^+ e^- \to \pi^+ \pi^-) K(s)$$

published result (Phys. Lett. B606 (2005) 12):

$$a_{\mu}^{\pi\pi}$$
([0.35-0.95] GeV²) = (388.7 ± 0.8_{stat} ± 3.5_{sys} ± 3.5_{th}) · 10⁻¹⁰

applying update for trigger efficiency and change in theoretical σ_{Bhabha} :

 $a_{\mu}^{\pi\pi}$ ([0.35-0.95] GeV²) = (384.4 ± 0.8_{stat} ± 3.5_{sys} ± 3.5_{th}) · 10⁻¹⁰

new:

 $a_{\mu}^{\pi\pi}$ ([0.35-0.95] GeV²) = (389.2 ± 0.6_{stat} ± 3.0_{sys} ± 2.0_{th}) · 10⁻¹⁰

KLOE results on a_{μ} (2)

Results on a_{μ} in the same range: a comparison

KLOE result in agreement with CMD2 and SND

F_{π} comparison with other results

only statistical errors are shown better agreement on the ρ peak

band: KLOE error, and data points: other experiments

Federico Nguyen 08-04-2008

Fit to the pion form factor

 $\chi^2/dof = 79.3/54$

Federico Nguyen 08-04-2008

15

Fit in the ρ - ω region: momentum scale check

We have obtained the contribution to $a_{\mu}^{\pi\pi}$ in the range between 0.35 - 0.95 GeV² using cross section data obtained via the ISR events with photon emission at small angles.

• The result from new data agrees with the updated result from the published KLOE analysis, we are working to combine results

• KLOE results also agree with recent results on $a_{\mu}{}^{\pi\pi}$ from the CMD2 and SND experiments at VEPP-2M in Novosibirsk

 \bullet The new F_{π} shows better agreement with Novosibirsk spectra

- Independent analysis is in progress using detected photons emitted at large angle (progress in scalar meson modelling)
- We are also measuring the pion form factor using the ratio of $\pi\pi\gamma$ over $\mu\mu\gamma$ yields (instead of absolute normalization)
- Finally we are measuring pion form factor from data taken at \sqrt{s} = M_{ϕ} 20 MeV ~(1~GeV)

SPARES

Federico Nguyen 08-04-2008

Comparison 2001-2002 data

Federico Nguyen 08-04-2008

20

KLOE: performances for the $\pi\pi\gamma$ analysis

see talk of A. Passeri

