International Workshop on e+e- Collisions from Phi to Psi (PHIPSI08) Laboratori Nazionali di Frascati April 7 - 10, 2008

BABAR Results on Hadronic Cross Sections with Initial State Radiation (ISR)

Achim Denig Johannes Gutenberg-Universität Mainz for the BABAR collaboration

Motivation & ISR - Method

Achim Denig

Motivation: $(g_{\mu}-2)$ and $\alpha(M_Z)$

3

ISR at Y(4S) Energies

$$M_{hadr} \frac{d\sigma_{Hadr + \gamma}}{dM_{hadr}} = \sigma_{hadr}(s) \times H(s)$$

Radiator-Function (NLO) MC-Generators EVA, Phokhara, AfkQed J. Kühn, H. Czyż, G. Rodrigo

ISR-physics:

- Already used at KLOE, used at *BABAR* over a wider energy range
- Whole √s' spectrum from threshold to ~4 ... 5 GeV
- Data comes as a by-product to the main physics goal of PEP-II
- Greatly reduced point-to-point uncertainty with ISR-program at PEP-II

BABAR Results on Hadronic Cross Sections with ISR

Achim Denig

ISR at Y(4S) Energies

Features:

- Rely on tagged (=measured) photon for identifying ISR-events
- Excellent momentum resolution by means of kinematic fit
- High **fiducial efficiency** :

wide-angle ISR-γ forces hadronic system into detector fiducial region at large polar angles

- Harder momentum spectrum due to boost
 - fewer problems with soft particles;
 - allows to go down to threshold
- Typically **systematic uncertainties** ~5% up to ~20% depending on mass and channel

 L_{ISR} = integrated luminosity in energy scan, corresponding to same statistics as the one in ISR method

Exclusive Hadronic Channels available at PhiPsi06 @ BINP

$$\begin{array}{c} -e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0} \\ -e^{+}e^{-} \rightarrow 2(\pi^{+}\pi^{-}), \pi^{+}\pi^{-}K^{+}K^{-}, 2(K^{+}K^{-}) \end{array} \right\} 89 \text{ fb}^{-1} \\ -e^{+}e^{-} \rightarrow 3(\pi^{+}\pi^{-}), 3(\pi^{+}\pi^{-}\pi^{0}), 2(\pi^{+}\pi^{-})K^{+}K^{-} \\ -e^{+}e^{-} \rightarrow p\overline{p} \end{array} \right\} 232 \text{ fb}^{-1} \\ \end{array}$$

7

Many new Results since then

 $- e^+ e^- \to \pi^+ \pi^- \pi^0 \pi^0, \, \mathrm{K}^+ \, \mathrm{K}^- \pi^+ \, \pi^-, \, \mathrm{K}^+ \, \mathrm{K}^- \pi^0 \, \pi^0$

- $e^+e^- \rightarrow 2(\pi^+\pi^-)\pi^0$, $2(\pi^+\pi^-)\eta$, $\pi^+\pi^-K^+K^-\pi^0$, $\pi^+\pi^-K^+K^-\eta$

-
$$e^+e^- \rightarrow K^+K^-\pi^0$$
, $K^+K_S\pi^-$, $K^+K_S\eta$

 $- e^+ e^- \rightarrow \Lambda^0 \overline{\Lambda}{}^0, \Lambda^0 \overline{\Sigma}{}^{\overline{0}}, \Sigma^0 \overline{\Sigma}{}^{\overline{0}}$

all based on 232 fb⁻¹ now available: ~500 fb⁻¹ !

4 Hadrons:

$$e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$$

 $e^+e^- \rightarrow K^+K^-\pi^+\pi^-$
 $e^+e^- \rightarrow K^+K^-\pi^0\pi^0$

 $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$

Features:

- Important mode for a_{μ} and α_{QED}
- Preliminary precision: 8% in peak \rightarrow 5%
- Good agreement with SND <1.4 GeV
- Huge improvement >1.4 GeV
- First measurement >2.5 GeV

Substructures in $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$

Achim Denig

(Sub)structures in $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$

New 4π MC (Czyz, Kühn, Wapienik) arXiv:0804:0359

Questions:

For first time ρ+ρ- is seen, it is large and even dominating the non-ω-spectrum, surprise in QCD? Combine with BABAR measurement at 10.6 GeV
The structure at 2050 MeV is the ρ(2050)?!

$e^+e^- \rightarrow K^+K^-\pi^+\pi^-, K^+K^-\pi^0\pi^0$

Motivation:

PRD-RC 74 (2006) 091103

- Factor 2.5 more statistics with respect to published result
- Search for $\phi(1020)f_0(980)$ final state and relation to $\phi(1020) \rightarrow f_0(980) \gamma$
- BR of J/ψ and $\psi(2S)$ to $\phi(1020)\pi\pi$
- Search for **new states**

Structure in $e^+e^- \rightarrow \phi f_0(980)$

PRD 76 (2007) 092005

5 Hadrons:

$$e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^0, \pi^+\pi^-\pi^+\pi^-\eta$$

 $e^+e^- \rightarrow K^+K^-\pi^+\pi^-\pi^0, K^+K^-\pi^+\pi^-\eta$

 $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^0, \pi^+\pi^-\pi^+\pi^-\eta$

First inclusive measurement of these states

Substructures $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^0$

Rich structure: clear peaks are visible

- ~20% $\eta \pi^+ \pi^-$, mostly $\eta \rho^0$ - ~40% $\omega \pi^+ \pi^-$, contains some ωf_0
- the rest is well described by ω' and ω''
- then almost all $\rho^0\rho^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$

 $\eta\pi^+\pi^-$ and $\omega\pi^+\pi^-$ modes consistent with previous measurements, better precision

Substructures $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-\eta$

Achim Denig

BABAR Results on Hadronic Cross Sections with ISR

arXiv:0710.4451 submitted to PRD

3 Hadrons including 2 Kaons:

$$e^+e^- \rightarrow K^+K^-\pi^0, K^+K^-\eta$$

 $e^+e^- \rightarrow K^+K_S\pi^-$

 $e^+e^- \rightarrow K^+K^-\pi^0, K_SK\pi$

Features:

- Dominant decay mode for the $\phi(1680)$
- Systematic errors 5% 6%
- Significant improvement over existing measurements from DM1, DM2

Dalitz plots for the $K^+K^-\pi^0$, $K_SK\pi$

Both Dalitz plots are dominated by the K*(890), some K₂*(1430) also present

- →Allows to extract the isospin components (isoscalar, isovector) of the KK*(890) cross section (moduli and relative phase)
- → Allows a description in terms of vector meson resonances without interferences

Isospin components in K(890)K*

A global fit in E_{c.m.} bins has been performed

Achim Denig

to appear in PRD

Baryons: $e^+e^- \rightarrow \Lambda^0 \overline{\Lambda^0}, \Lambda^0 \overline{\Sigma^0}, \Sigma^0 \overline{\Sigma^0}$

Achim Denig

 $e^+e^- \rightarrow \Lambda^0 \Lambda^0, \Lambda^0 \Sigma^0, \Sigma^0 \Sigma^0$

Continuation of the ISR-baryon program, which started with the measurement of the proton form factor in the time like region

Select events with $\Lambda \rightarrow p\pi^-$ and $\overline{\Lambda} \rightarrow p\pi^+$ Add an additional photon for the Σ candidates Perform a kinematic fit with Λ , Σ mass constraints and distinguish channels based on best χ^2

Achim Denig

Baryon (Effective) Form Factors

Achim Denig

 $|G_E / G_M|$ for $\Lambda^0 \Lambda^0$

- Can measure $|G_E/G_M|$ by fitting the distribution of the cosine of helicity angle

Λ⁰ polarization tested by fitting the slope of the angle btw. the polarization axis and the proton momentum in the Λ⁰ rest frame: -0.22 <P_Λ<0.28 @90% C.L.
 → tests a non-zero relative phase btw. G_E and G_M: -0.76 < sinφ < 0.98

Achim Denig

Conclusions

Achim Denig

Conclusions

- Radiative Return physics continues to be a productive field beyond B-physics at *BABAR*
- Measurements are important to improve our theoretical understanding of $(g-2)_{\mu}$ and $\alpha(M_Z)$
- (Sub)Structures: growing impact in the field of hadron spectroscopy
 - New structures at low energies at M~2175, 1900, 2050, ... MeV
 - Y(4260) discovered in ISR-events
 - 26 J/ ψ and 10 ψ (2S) branching ratios measured, very competitive
- In future many new, improved studies planned
 - update current results
 - additional excl. channels under study, in particular $e^+e^- \rightarrow \pi^+\pi^-$
 - inclusive measurements of R

Conclusions

To calculate R only using *BABAR* data in the energy range <2 GeV the missing processes $\pi^+\pi^-$, $\pi^+\pi^-3\pi^0$, $\pi^+\pi^-4\pi^0$, K^+K^- , K_SK_L , $K_SK_L\pi\pi$ must be measured.

Achim Denig