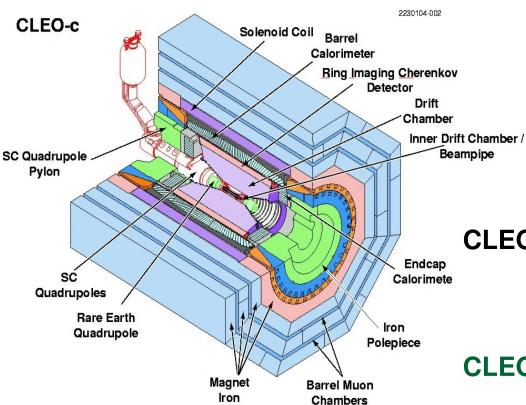

# Measurement of R at CLEO

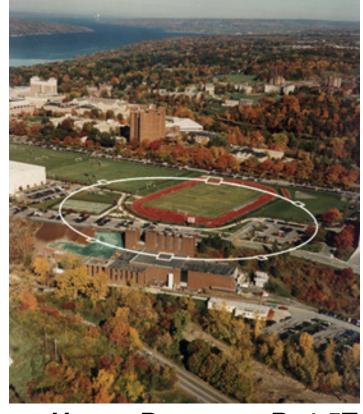
Jim Libby
University of Oxford





### Outline


- CLEO-III and CLEO-c
- Motivation
- Two recent results
  - □ CLEO-III data ( $s^{1/2} = 6.96 10.54$  GeV):
    - "Measurement of the Total Hadronic Cross Section in e+e-Annihilations Below 10.56 GeV", D. Besson et al., Phys. Rev. D76, 072008 (2007)
  - $\Box$  CLEO-c data (s<sup>1/2</sup> = 3.97-4.26 GeV):
    - "Measurement of Charm Production Cross Sections in e+e-Annihilation at Energies between 3.97 and 4.26 GeV", submitted to Phys. Rev. D, arXiv:0801.3418 (2008)
- Conclusion


# CLEO-III(c) and CESR-b(c)

#### •e+e-collisions

•CESR-b (10.6 GeV): L=1.2 10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup>

•CESR-c (4.0 GeV): L=0.7 10<sup>32</sup> cm<sup>-2</sup>s<sup>-1</sup>





CLEO-III: Silicon Vertex Detector; B=1.5T

Improve low-p tracking

**CLEO-c:** Inner Drift Chamber; B=1.0T

### Motivation

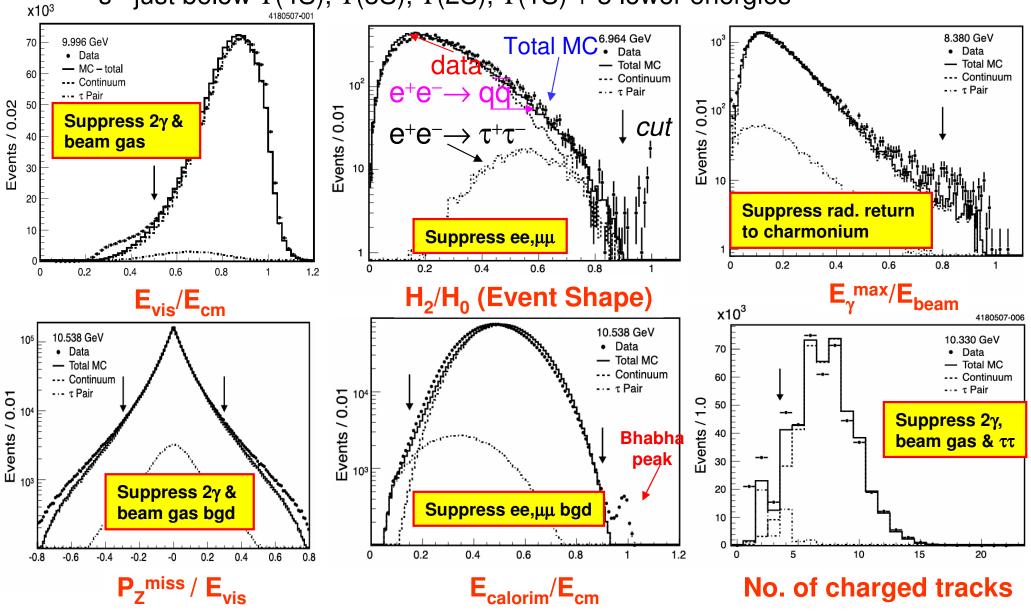
$$R(s) = \frac{\sigma_o(e^+e^- \to hadrons)}{\sigma_o(e^+e^- \to \mu^+\mu^-)}$$

- R(s) in the continuum (s $^{1/2}$  = 6.96-10.54 GeV): CLEO-III
  - $\Box$  determine  $\alpha_s$

$$R(s) = R_0 \left[ 1 + C_1 \frac{\alpha_s(s)}{\pi} + C_2 \left( \frac{\alpha_s(s)}{\pi} \right)^2 + C_3 \left( \frac{\alpha_s(s)}{\pi} \right)^3 + O(\alpha_s^4(s)) \right]$$

$$C_1 = 1, C_2 = 1.525 \text{ and } C_3 = -11.686$$

- R(s) in the resonance region ( $s^{1/2} = 3.95-4.25$  GeV):
  - needed for dispersion integrals of hadronic vacuum polarization
    - **g**-2,
    - $= \alpha_{\text{QED}}(s)$  used in fits to SM Higgs and


CLEO-c

- precision QED MC generators for  $e^+e^- \rightarrow l^+l^-$
- In addition, exclusive & inclusive open charm final state decomposition

CLEO-III - 
$$s^{1/2} = 6.96 - 10.54 \text{ GeV}$$

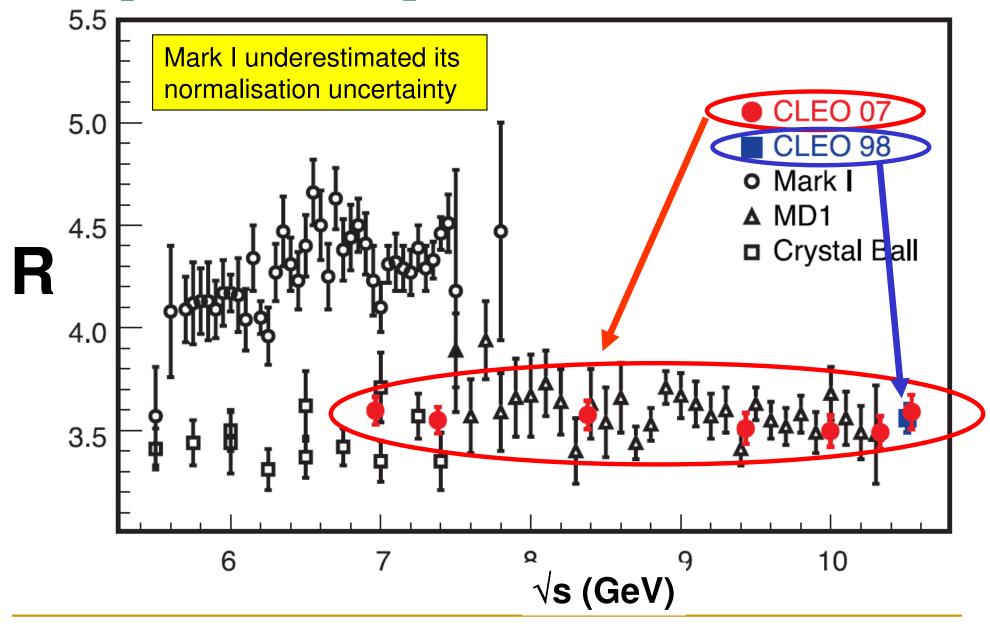
## Event selection

 $s^{1/2}$  just below  $\Upsilon(4S)$ ,  $\Upsilon(3S)$ ,  $\Upsilon(2S)$ ,  $\Upsilon(1S)$  + 3 lower energies



# Data Analysis

- Corrections:
  - for the remaining  $e^+e^- \rightarrow \tau^+\tau^-$  etc. background
  - energy-dependant efficiency
    - Variation 82.1-87.4%
  - radiative corrections:
    - soft photon and vacuum polarisation
    - hard photon emission: low mass resonances and continuum
  - □ interference with Υ resonances
- Measure luminosity for normalization
- Evaluate systematic errors


# Systematic uncertainties

| Energy (GeV)                                         | 10.538                                          | 10.330 | 9.996 | 9.432 | 8.380 | 7.380 | 6.964 |
|------------------------------------------------------|-------------------------------------------------|--------|-------|-------|-------|-------|-------|
| Luminosity                                           | 1.00                                            | 1.10   | 1.10  | 1.10  | 0.90  | 0.90  | 1.00  |
| Trigger                                              | 0.09                                            | 0.09   | 0.11  | 0.08  | 0.12  | 0.13  | 0.19  |
| Radiative                                            | 1.00                                            | 1.00   | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  |
| Correction Dominated by hadronic vacuum polarisation |                                                 |        |       |       |       |       |       |
| Multiplicity                                         | 1.06                                            | 1.38   | 0.99  | 0.84  | 0.43  | 0.38  | 0.38  |
| Correction                                           | Correction MC/data efficiency reweighting       |        |       |       |       |       |       |
| Event                                                | 1.51                                            | 1.09   | 1.31  | 1.31  | 1.05  | 1.02  | 0.79  |
| selection                                            | selection Efficiency and background subtraction |        |       |       |       |       |       |
| Total                                                | 2.32                                            | 2.30   | 2.21  | 2.15  | 1.76  | 1.74  | 1.68  |
| Common                                               | 1.87                                            | 1.67   | 1.85  | 1.87  | 1.62  | 1.64  | 1.58  |
| Uncorrelated                                         | 1.37                                            | 1.59   | 1.22  | 1.05  | 0.70  | 0.57  | 0.55  |

~2%

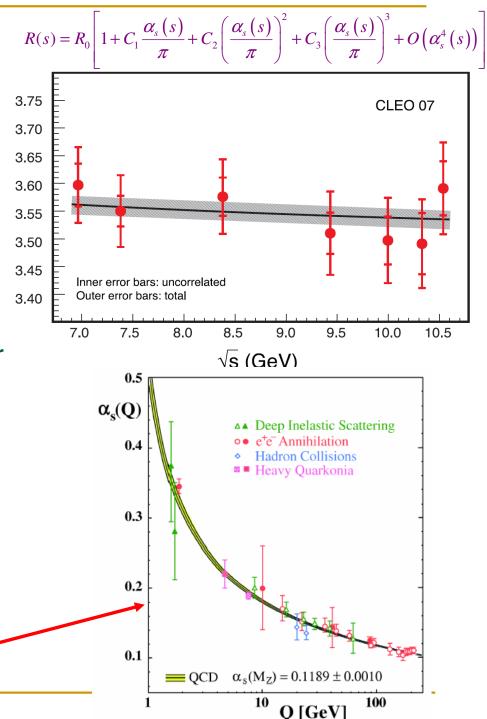
#### **Common uncertainties dominate**

## Comparison with previous measurements



# Determination of $\alpha_s$

 Determination, using massless quarks and 4-quark flavours

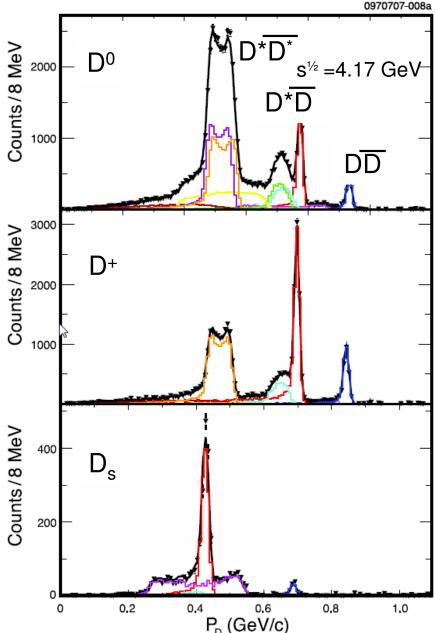

$$\alpha_s(M_Z^2) = 0.110^{-0.010 + 0.010}_{-0.012 - 0.011}$$

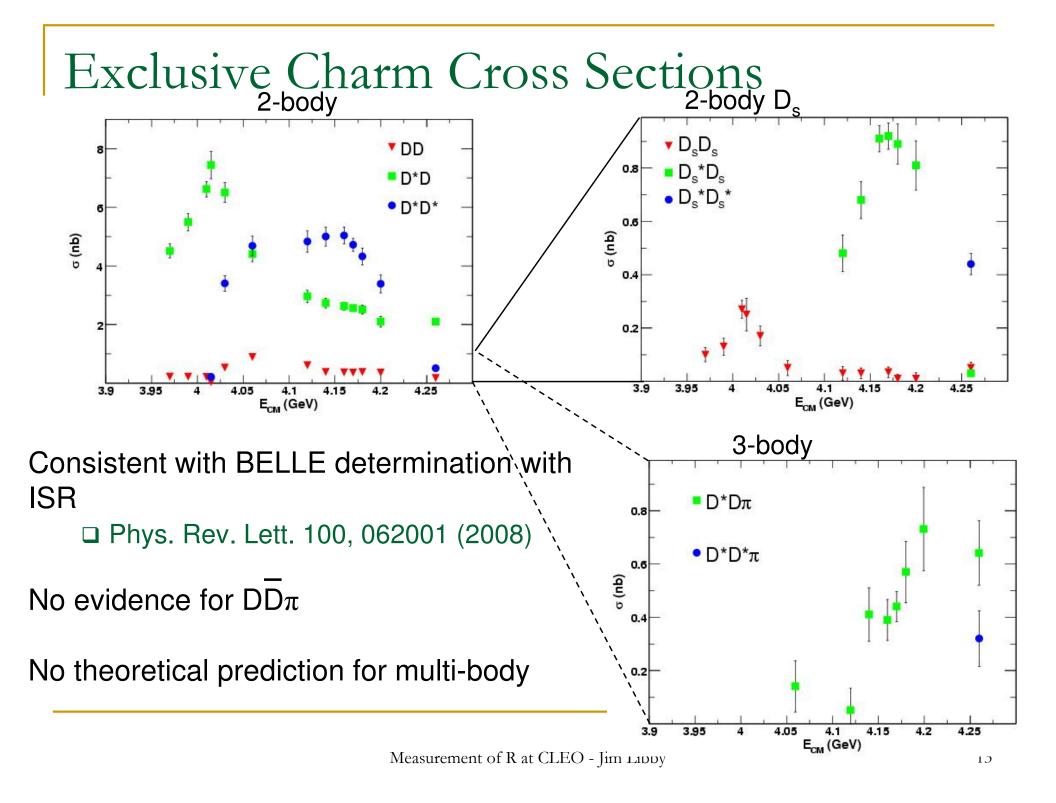
- Alternate determination using
  - quark mass effects and
  - matching between 4 and 5 flavour effective theories
  - J.H. Kuhn, M. Steinhauser and T. Teubner, Phys. Rev. D76, 074003 (2007)

$$\alpha_s (M_Z^2) = 0.126 \pm 0.005^{+0.015}_{-0.011}$$

- The world average determination
  - S. Bethke, Prog. Part. Nucl. Phys. 58, 351 (2007)

$$\alpha_s (M_Z^2) = 0.1189 \pm 0.0010$$

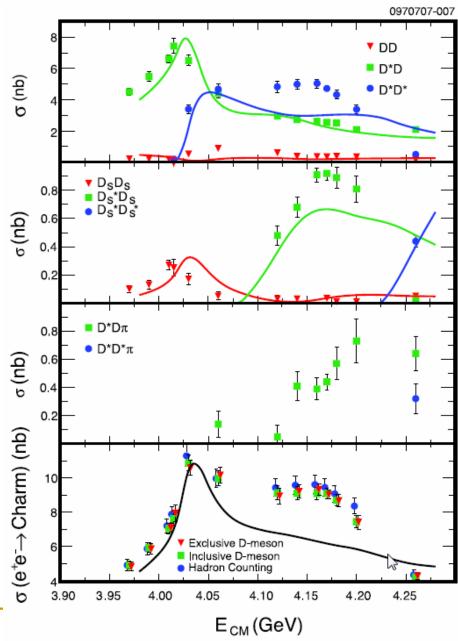




CLEO-c - 
$$s^{1/2} = 3.97-4.26 \text{ GeV}$$

## Decomposition of charm cross section

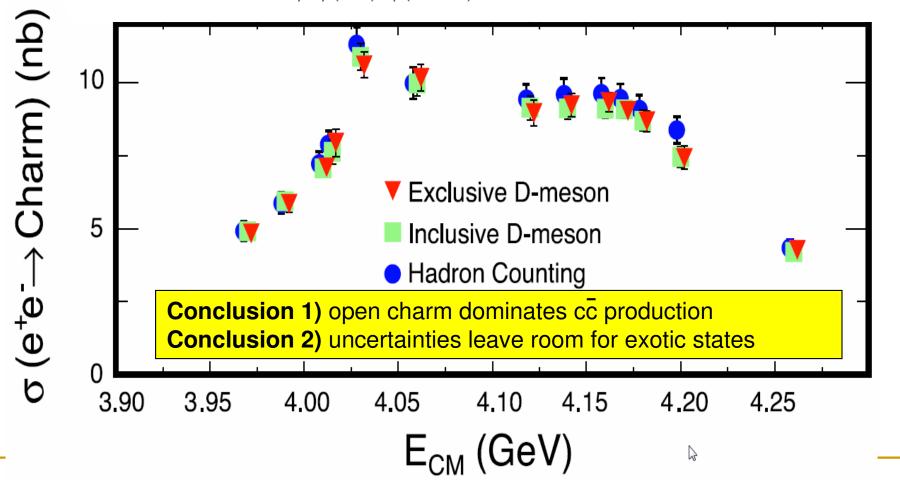
- Resonant region above  $\psi(3770)$ 
  - 12 scan points between 3.97-4.26 GeV
  - Integrated luminosity normally between 1.5 and 13.1 pb<sup>-1</sup>
  - □ Exception: 179 pb<sup>-1</sup> at 4.17 GeV
- Find candidate with ±15MeV of the nominal D<sup>0</sup>, D<sup>+</sup> or D<sub>s</sub> mass:
  - $\square$   $D^0 \rightarrow K^-\pi^+$

  - $\begin{array}{ll} \Box & D_s {\to} \phi [K^- K^+] \pi^+ \, (\rho^+), \, D_s {\to} \eta [\gamma \gamma] \, \pi^+ (\rho^+), \\ & D_s {\to} K^{*0} [K^- \pi^+] \pi^+, \, D_s {\to} \eta' [\eta \pi^+ \pi^-] \pi^+ (\rho^+) \, \text{and} \\ & D_s {\to} K^0_S K^+ \, (16\% \, \text{of total BF}) \end{array}$
- For each scan point, fit mass-sideband subtracted momentum spectrum of the D<sup>0</sup>, D<sup>+</sup> or D<sub>s</sub> candidates to determine production channel






## Comparison to coupled-channel model


#### Model (solid lines):

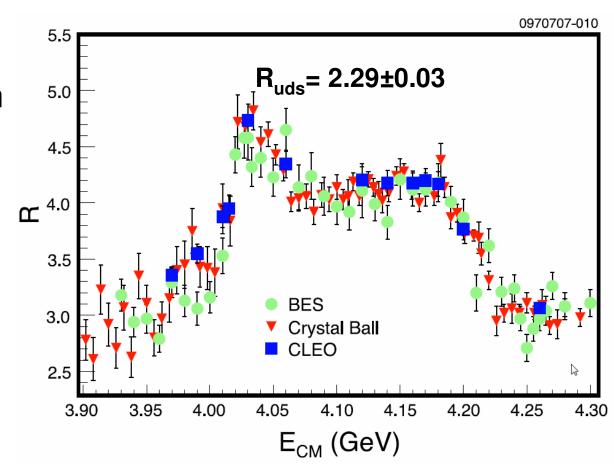
- E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane, T.M. Yan, Phys. Rev. D21, 203 (1980)
- Updated predictions presented at QWG workshop at BNL, June 2006
- Reasonable qualitative agreement for most of the exclusive channels
  - Worst in D\*D\*



#### Inclusive Charm Cross Section

- Exclusive D-meson: sum of all determined exclusive cross-sections
- Inclusive D-meson: sum of inclusive D<sup>0</sup>,D<sup>+</sup>,D<sub>s</sub> divided by 2
- Hadron Counting: similar to the analysis of the  $s^{1/2}$  =6.96–10.54 GeV data
  - $\Box$  Subtract uds contribution from the scaled continuum data taken below  $\psi(2S)$
  - □ Subtract tails of the  $J/\psi, \psi(2S), \psi(3770)$  resonances




# Properties of the Y(4260)

- Data at s<sup>1/2</sup>=4260 MeV has potential to discriminate between hypotheses for the nature of the Y(4260)
  - Hybrid charmonium and tetraquark models predict enhancement of decays to open charm
- No enhancements observed
- Limits set on open-charm decay of Y(4260)

| Final State $(X)$  | $\frac{\sigma(Y(4260) \to X)}{\sigma(Y(4260) \to \pi^+\pi^- J/\psi)}$ |
|--------------------|-----------------------------------------------------------------------|
| $Dar{D}$           | < 4.0                                                                 |
| $D^*ar{D}$         | < 45                                                                  |
| $D^*ar{D}^*$       | < 11                                                                  |
| $D^*\bar{D}\pi$    | < 15                                                                  |
| $D^*\bar{D}^*\pi$  | < 8.2                                                                 |
| $D_s^+D_s^-$       | < 1.3                                                                 |
| $D_s^{*+}D_s^-$    | < 0.8                                                                 |
| $D_s^{*+}D_s^{*-}$ | < 9.5                                                                 |

## R(s) in charm threshold region

- Use the inclusive charm cross-section determined via the hadron counting method
- Add back uds contribution from a 1/s fit to the world data on R(s) in 3.2-3.72 GeV range (2.285 ±0.03 nb)
- Apply radiative corrections



Most accurate determinations in this region

#### Conclusion

- R measured for  $s^{1/2} = 6.96 10.54$  GeV
  - Most precise
  - $\square$  Determines  $\alpha_{\rm S}({\rm M_2}^2)$  with ~10% uncertainty
    - Consistent with world average from alternate techniques
- Exclusive & inclusive charm for E<sub>CM</sub>=3.97-4.26 GeV
  - Region of many thresholds & much structure
    - Exclusively deconstructed its composition
    - Multi-body open charm measured for the first time
    - This deconstruction is useful input for model builders
      - Qualitative agreement with coupled channel predictions
  - Precision of R is improved at 13 points