

CMD-2 and SND results

on e⁺e⁻ -> Ladrons cross sections

Fedor Ignatov

on behalf of the CMD2 & SND collaborations Budker Institute of Nuclear Physics (Novosibirsk, Russia)

Workshop on e^+e^- collisions from φ to ψ

FRASCATI, ITALY, 7-10 APRIL 2008

Cross-section $e+e- \rightarrow hadrons$

Measurement of the cross-section $e+e- \rightarrow$ hadrons in VEPP-2M energy range is interesting for:

× measurement of parameters of light vector mesons ρ , ω , ϕ , ρ' , ρ'' , ω' , ω''

x measurement of R(s) :

$$R(s) = \frac{\sigma^{0}(e^{+}e^{-} \rightarrow \gamma^{*} \rightarrow hadrons)}{\sigma^{0}(e^{+}e^{-} \rightarrow \gamma^{*} \rightarrow \mu^{+}\mu^{-})}$$

 comparison with spectral functions of the hadronic tau decays

R(s) measurements at low s

At low s R(s) has to be measured in each channel. The value and the error of the hadronic contribution to muon's (g-2) are dominated by low energy R(s).

April 8, 2008

ΦΨ

CMD-2 & SND

VEPP-2M collider

- × VEPP-2M collider: 0.36-1.4 GeV in c.m., L≈10³⁰ 1/cm²s at 1 GeV
- × Detectors CMD-2 and SND: ∫Ldt ≈ 60 pb⁻¹ collected in 1993-2000
- × Precise energy: $\Delta E / E \sim 10^{-4}$ with depolarization method;

10⁻³ from field in magnets

* All major hadronic modes were measured:

 $e+e- \rightarrow 2\pi, 3\pi, 4\pi, KK, ...$

 $e+e- \rightarrow \rho, w, \phi$

APRIL 8, 2008

 Φ_{Ψ}

Spherical Neutral Detector (SND)

1 - vacuum chamber, 2 - drift chambers,

3 - scintillation counter, 4 - light guides,

5 – PMT, 6 – Nal(TI) crystals, 7 – VPT,

- 1 vacuum chamber, 2 drift chamber,
 3 Z-chamber, 4 superconducting
 solenoid, 5 compensating magnets,
 6 BGO end cap calorimeter,
 7 Csl(Tl,Na) calorimeter,
- 8 muon system, 9 magnet yoke.
- 8 iron absorber, 9 streamer tubes, 10 – iron plates,
 - 11 scintillation counters

APRIL 8, 2008

Φ

Inclusive Hadronic Cross-Sections with CMD2&SND

CMD-2 & SND

Measured cross-sections have difference about 4 orders of magnitude

APRIL 8, 2008

ΦΨ

() Edd

Cross-section $e+e-\rightarrow\pi+\pi$ -

Events signature:

two collinear tracks are almost back-to-back vertex located near interaction point

Data sample includes events with: e+e-, $\mu+\mu$ -, $\pi+\pi$ -, cosmic muons

Mostly doesn't have any other background at $\int s < 1 \text{ GeV}$

Event separation (CMD-2)

APRIL 8, 2008

Event separation (SND)

Event separation is based on neural network:

* 7 input parameters: energy deposition in each layer for both clusters and polar angle

- × 2 hidden layers 20 neurons each
- × 1 output parameter $R_{e/\pi}$
- × Trained on simulated events
- × Checked on experimental 3π and e+e- events

Φ

APRIL 8, 2008

Distribution by separation

parameter

Pion formfactor

Comparison of CMD-2 and SND

F_π(SND)/F_π(CMD296)-1 .0 .0 F_π(SND)/F_π(CMD298)-1 0. 0 0 Syst.error -0.2 -0.1 400 450 500 600 700 800 900 √s, MeV √s, MeV

∆(SND-CMD2)≈1.2%±3.6%

Js<0.55 GeV

∆(SND-CMD2)≈-0.53%±0.34%

0.6<5s<1 GeV

4 April 8, 2008

Efficiency determination gives main contribution to the systematic error

4 April 8, 2008

CMD-2 & SND

Cross-section e+e- $\rightarrow \pi + \pi - 2\pi 0$; $\pi + \pi - \pi 0$

$e+e- \rightarrow \pi+\pi-\pi 0$ at ϕ (CMD2)

Cross-section $e+e- \rightarrow 2K$

Cross-section $e+e- \rightarrow K+K-$ (CMD2)

1.0 pb⁻¹ of integrated luminosity, collected in $E_{cm} = 1010 - 1034$ MeV

Idea of selection

Kaon from ϕ meson decay is a low momentum track with big dE/dx value, coming from the beam.

 $\label{eq:weighted} \begin{array}{l} & \underline{We \; determine \; ``good'' \; kaon \; as:} \\ & P_{tot} < 200 \; MeV/c \\ & dE/dx > 2 \; dE/dx_{MIP} \\ & R_{min} < 0.4 \; cm \\ & 1.0 < \theta_{K} < \pi - 1.0. \\ & N_{R\phi} > 6, \; N_{RZ} > 3 \\ & \sigma_{R\phi} < 0.07 \; cm, \; \sigma_{RZ} < 3.0 \; cm \end{array}$

We select events with one or two "good" kaons.

P_{tot}, MeV/c

CMD-2 & SND

542 000 events with one or two "good" kaons were used in the analysis

April 8, 2008

ΦΨ

Cross-section $e+e- \rightarrow K+K-$

CMD-2 (2008) $B_{ee}B_{KK} = (14.29\pm0.05\pm0.31)\cdot10^{-5}$ $m_{\phi} = 1019.441\pm0.008\pm0.080 \text{ MeV/c}^2$ $\Gamma_{\phi} = 4.24\pm0.02\pm0.03 \text{ MeV}$ APRIL 8, 2008

The e+e- $\rightarrow K_{s}K_{l}$ cross section

The cross section measurements were based on the $K_{c} \rightarrow \pi^{0}\pi^{0}$ and $\pi^{+}\pi^{-}$ decays.

Ф Ш

April 8, 2008

Systematic errors: SND - 3.3% CMD-2 - 1.7%

CMD-2 & SND

Inclusive Hadronic Cross-Sections with CMD2&SND

Conclusions

- × Despite decades of experiments, precise studies of e⁺e⁻ annihilation into hadrons at low energies are still interesting and provides a lot of important information.
- × In the 1995-2000 the experiments with CMD-2 and SND detectors at VEPP-2M were fulfilled.
- * CMD-2 and SND data analyses are nearly completed.
- × Cross sections of all major modes of e+e- \rightarrow hadrons are measured in the energy region $\int s = 0,36 1,38$ GeV.
- * Results of these experiments determine nowadays the accuracy of the light vector mesons parameters knowledge. Them are one of the main sources of information about particle physics at low energies.
- * In a few years new high precision data from CMD-3 and SND working at VEPP-2000 are expected

Example of CMD-2 and SND events

$e^+e^- \rightarrow \pi^+\pi^-$ in CMD-2

 $e^+e^- \rightarrow K^+K^-$ in SND

Data taking history

2000 ~2M π+π-

Systematic errors

Source of error	CMD-2	SND	CMD-2
	√s<1 GeV		√s>1.0 GeV
Event separation	0.2-0.4%	0.5%	0.2-1.5%
Fiducial volume	0.2%	0.8%	0.2-0.5%
Energy calibration	0.1-0.3%	0.3%	0.7-1.1%
Efficiency correction	0.2%-0.5%	0.6%	0.5-2.0%
Pion losses (decay, NI)	0.2%	0.2%	0.2%
Other	0.2%	0.5%	0.6-2.2%
Radiative corrections	0.3-0.4%	0.2%	0.5-2.0%
Total	0.6-0.8%	1.3%	1.2-4.2%

How cross-section is measured

All modes except 2π

2π

$$\sigma(\mathbf{e}^{+}\mathbf{e}^{-} \rightarrow \mathbf{H}) = \frac{\mathbf{N}_{\mathbf{H}} - \mathbf{N}_{\mathbf{bg}}}{\mathbf{L} \cdot (\mathbf{1} + \boldsymbol{\delta}_{\mathbf{H}}) \cdot \boldsymbol{\varepsilon}_{\mathbf{H}}}$$

- Luminosity L is measured using
 Bhabha scattering at large angles
- \bullet Efficiency ϵ is calculated via Monte Carlo + corrections for imperfect detector
- \bullet Radiative correction δ accounts for ISR effects only

$$|\mathbf{F}_{\pi}|^{2} = \frac{\mathbf{N}_{\pi\pi}}{\mathbf{N}_{ee}} \cdot \frac{\sigma_{ee}^{\mathbf{B}} \cdot (\mathbf{1} + \delta_{ee}) \cdot \varepsilon_{ee}}{\sigma_{\pi\pi}^{\text{pointlike}} \cdot (\mathbf{1} + \delta_{\pi\pi}) \cdot \varepsilon_{\pi\pi}}$$

- Ratio N($\pi\pi$)/N(ee) is measured directly \Rightarrow detector inefficiencies are cancelled out
- Virtually no background
- Analysis does not rely on simulation
- Radiative corrections account for ISR and FSR effects
- Formfactor is measured to better precision than L

What is really measured?

Definition of $\sigma(e^+e^- \rightarrow hadrons)$ depends on the application

- Hadron spectroscopy: vacuum polarization (VP) is the part of the crosssection ("dressed"), final state radiation (FSR) is not
- "Bare" cross-section used in R: vice versa FSR is the part of the crosssection, VP is not
- Measured number of events include VP and part of FSR allowed by the event selection

CMD-2 published 2 cross-sections $e^+e^- \rightarrow 2\pi$:

 $\sigma_{_{\pi\pi}}$

radiative correction take into account part of FSR, allowed by the event selection (thus remove FSR completely from the measured cross-section); VP is left untouched. Used to get rho-meson mass, width, ...

$$\sigma_{\pi\pi(\gamma)}^{0} \begin{cases} \text{VP is removed, all FSR is added.} \\ \text{Used for R calculation} & \text{FSR} & \text{VP} \\ \sigma_{\pi\pi(\gamma)}^{0} = \sigma_{\pi\pi} \cdot (1 + \frac{\alpha}{\pi} \Lambda^{\text{FSR}}(s)) \cdot |1 - P(s)|^{2} \end{cases} \end{cases}$$

Comparison of CMD2(95) and CMD2(98)

∆(95-98)≈0.7%±0.5%

Comparison with ALEPH ($\tau \rightarrow \pi \pi^0 v$)

<mark>ε⁺ε⁻→π⁺π⁻π⁰ ατે φ (CMD2)</mark>

... but addition of $\rho'(1450)\pi$ provides equally good description with

a'=0.215±0.092±0.036 φ'=0.177±0.132±0.051

$e^+e^- \rightarrow K_L K_S, K_S \rightarrow \pi^+\pi^- (CMD-2)$

- 2E=1.0-1.04 GeV $L=2 \text{ pb}^{-1}, \text{ N}=2.7\times10^{5}$ $\sigma_{0}(\phi \rightarrow \text{K}_{L}\text{K}_{S})=1413\pm6\pm24 \text{ nb}$ $m_{\phi}=1413\pm6\pm24 \text{ MeV/c}^{2}$ $\Gamma_{\phi}=4.280\pm0.033\pm0.025 \text{ MeV}$ systematic error in $\sigma(e^{+}e^{-} \rightarrow \text{K}_{L}\text{K}_{S}) 1.7\%$
- <u>2E=1.05-1.38 GeV</u>, *L*=5.8 pb⁻¹, N=10³ systematic error in σ(e⁺e⁻ →K_LK_s) 5-10%

solid curve is VDM with $\rho(770), \omega(783), \phi(1020) + X$ dash curve is VDM with $\rho(770), \omega(783), \phi(1020)$ only

The $e^+e^- \rightarrow \eta \gamma$ cross section

Inclusive Hadronic Cross-Sections

