

at

Frascati, 7 – 10 Aprile 2008

- Recent observations of (unexpected) new states performed.
- Several resonances do not fit theoretical predictions.
- Many subsequent interpretations of these new states and methods were suggested to analyse their structure (HQT, chiral symmetries, 4-quark models, bag model, Lattice...)
- We can classify these resonant structures in 2 main categories:
 - Light Mesons: f⁰-family, K^{*0}(1430), a⁰-family
 - Heavy Hadrons (cs and cc mesons; baryons)

BaBar is a B-factory: 1999-2007 ar ~ 433fb⁻¹ @ Y(4S) (on-peak data) end of Dec07- end of Feb08 ar 30fb⁻¹ @ Y(3S) end of Feb08-6th of April08 ar 15fb⁻¹ @ Y(2S) scan around Y(4S) (25pb⁻¹ every 5 MeV)

- The main goal of the BaBar Physics has been the measurement of the sides and angles of the Unitarity Triangle, and rare decays.
- B-factories have been demonstrated to be also a huge source of cc production.
- The spectrum of Heavy Quarkonium states is an ideal place to provide precision tests of QCD.
- Very accurate calculations are possible using Lattice techniques.
 M_c~1.5 GeV/c² is high enough to try to describe QCD in term of NRPM.
 Frascati, 10.04.2008 3

E. Prencipe

As of 2008/03/18 00:00

<u>Heavy Spectroscopy in e⁺e⁻ interactions @Y(4S)</u>

• Production in continuum: $e^+e^- \rightarrow \psi X (C_x=+)$

Production B decays:

◆ b→c (color suppressed decay)

open-charm and charmonium
 (cs and cc meson, cqq baryons; cc +...)

charm and charmonium spectroscopy

• Transition Y(4S) \rightarrow Y(2S) $\pi^+\pi^-$, Y(4S) \rightarrow Y(1S) $\pi^+\pi^-$, Y(4S) \rightarrow Y(1S) η

bottomonium spectroscopy

The main goal of the physics @Y(3S) and @Y(2S) will be the search of bottomonium states and light Higgs.

📲 Frascati, 10.04.2008

- <u>cs</u> mesons
 - D_{s1}(2536): high precision measurements
 - D_{s0}*(2317), D_{s1}(2460), D_{sJ}*(2860): charm-strange mesons
 - X(2690) and D_{sJ}(2700): last surprise!

<u>Overview of the recent results</u>

- D_s*, D_{s1}(2536)⁺, D_{s2}(2573)⁺: well known, but J^P only **inferred** (not measured!)
 - **D**_{s0}*(2317)⁺ and **Ds1(2460)+**: unexpected observations of narrow resonances in **BaBar**. First two states observed at B-factories in $D_{\tau}^{+}\pi^{0}$ and $D_{\tau}^{*+}\pi^{0}$:

they do not fit theoretical expectations .

Mass, width, absolute BF fixed . Still unclear the interpretation, as more options are opened yet.

- D_{s1}*(2860)⁺: new state discovered by **BaBar**
- X(2690)⁺: broad enhancement seen in **BaBar**
- D_s(2700)⁺: new state discovered by Belle (is it X(2690)?)

Channels under study:

 $e^+e^- \rightarrow D^0K^+X; D^+K^0_SX$ $p^*(DK) > 3.5 \text{ GeV/c}$ D⁰→ K⁻ π⁺ π⁰ D⁺→ K⁻ π⁺ π⁺ D⁰→ K⁻ π⁺

Added the three modes

Another new resonance at 2690 MeV/c²?

- Or just a reflection?
- no signal in sidebands and $c\overline{c}$ -MC
- also seen in other places...

 $m(X(2690)) = 2688 \pm 4 \pm 3 \text{ MeV/c}^2$ $\Gamma(X(2690)) = 112 \pm 7 \pm 36 \text{ MeV}$

 $m(D_{SJ}^{*}(2860)) = 2856.6 \pm 1.5 \pm 5.0 \text{ MeV/c}^{2}$ $\Gamma(D_{SJ}^{*}(2860)) = 47 \pm 7 \pm 10 \text{ MeV}$

8

D_s(2700): <u>another surprise</u>?

- New resonance decaying to $D^{0}K^{+}$ discovered by *Belle* in $B^{+} \rightarrow D^{0}(D^{0}K^{+})$
 - D_s(2700)
- Same resonance as seen by BaBar in continuum, X(2690)?
 - Mass and width consistent, same decay mode
- Study of $B \rightarrow D^{(*)}D^{(*)}K$ decays in BaBar
 - Looking at 8 DK + 8 D*K invariant masses

- Enhancement observed around 2700 MeV/c² in DK and D*K
- Complex structure, full Dalitz plot analysis is ongoing.

charmed baryons

- Observation of Ω_c^0 and discovery of Ω_c^{*0}
- Discovery of Λ_c (2940)
- Observation of $\Xi_c(2980)^+$ and $\Xi_c(3077)^+$
- Discovery of $\Xi_c(3055)^+$ and $\Xi_c(3123)$

PRL 99(2007), 062001 PRL 97(2006), 232001

232 fb⁻¹

- Decay mode: D⁰p
- ♦ Known state: ∧_c(2880)⁺
 New decay mode;

More precise measurement of the *mass* and *I*?

♦ New state: ∧_c(2940)⁺

 First observation of charmed baryon decay to D and light baryon

$$\begin{split} m(\Lambda_{\rm c}(2880)^{*}) =& 2881.9 \pm 0.1 \pm 0.5 \; MeV/c^{2} \\ \varGamma(\Lambda_{\rm c}(2880)^{*}) =& 5.8 \pm 1.5 \pm 1.1 \; MeV \\ m(\Lambda_{\rm c}(2940)^{*}) =& 2939.8 \pm 1.3 \pm 1.0 \; MeV/c^{2} \\ \varGamma(\Lambda_{\rm c}(2940)^{*}) =& 17.5 \pm 5.2 \pm 5.9 \; MeV \end{split}$$

PRL 98, 012001

287 fb⁻¹

Excited charm-strange baryons

New state:

Ξ.05

$$\begin{split} m(\Xi_{c}^{+}) &= 3054.2 \pm 1.2 \pm 0.5 \; \textit{MeV/c}^{2} \\ \Gamma(\Xi_{c}^{+}) &= 17 \pm 6 \pm 11 \; \textit{MeV} \\ \text{Yields} &= 218 \pm 53 \pm 79 \\ \text{significance: } 6.4\sigma \end{split}$$

Evidence for:

 $\Xi_{c}(3123)^{+}$ m(Ξ_{c}^{+}) = 3122.9±1.3±0.3 *MeV/c*² $\Gamma(\Xi_{c}^{+})$ = 4.4±3.4±1.7 *MeV* Yields = 101±34±9 significance: 3.6 σ

Smaller values of m and Γ due to treatment of proximity to threshold

		Mass (MeV/c^2)	Width (MeV)	Yield (Events)	Significance
•	BABAR $\Xi_c(2980)^+$	$2967.1 \pm 1.9 \pm 1.0$	$23.6 \pm 2.8 \pm 1.3$	$284 \pm 45 \pm 46$	7.0σ
	Belle $\Xi_c(2980)^+$	$2978.5 \pm 2.1 \pm 2.0$	$43.5 \pm 7.5 \pm 7.0$	405 ± 51	6.3σ
	BABAR $\Xi_c(3077)^+$	$3076.4 \pm 0.7 \pm 0.3$	$6.2\pm1.6\pm0.5$	$204\pm35\pm12$	8.6σ
_	Belle $\Xi_c(3077)^+$	$3076.7 \pm 0.9 \pm 0.5$	$6.2\pm1.2\pm0.8$	326 ± 40	9.7σ

hep-ex/ 0607042

hep-ex/ 0710.5763

🗣 Frascati, 10.04.2008

E. Prencipe

CHARMONIUM SPECTROSCOPY

PRL96, 052002

Inclusive searches @ BaBar: B→XK

<u>Exclusive searches @ BaBar:</u> B→XK

🗣 Frascati, 10.04.2008

<u>Still some surprises</u>: B→(DD),K

- Events/10 MeV/c BaBar studied the channels: $\Psi(3770)$ $B^+ \rightarrow \overline{D}DK^+$ $B^+ \rightarrow D^0 D^{*0} K^+ + D^{*0} D^0 K^+$ $D^{*0} \rightarrow D^0 \gamma \text{ and } D^0 \pi$ $B^{0} \rightarrow D^{0}D^{*0}K^{0} + D^{*0}D^{0}K^{0}$ Measurements: 3.75 3.8 3.85 3.9 3.95 41 4.15 4.2 4.05▲M = (0.2±1.6)MeV/c² $\overline{D}D$ Invariant Mass (GeV/c²) R(B⁰/B[±]) = (1.33±0.69±0.43) MeV/c² Events/2 MeV/c² X(3872) $\frac{X(3872) \to D^{0}\overline{D^{0}\pi^{0}}}{X(3872) \to D^{0}\overline{D^{0}\gamma^{0}}} = 1.37 \pm 0.56$ All $\overline{D}^{*0}D^0$ modes • R experiment Mass (MeV/c²) 3875.2^{+0.7}-0.5±0.5 BABAR
 - M is ~4.5 σ away from the world average in J/ yr

R Expected: 1.3 for a state proceeding only via D^0D^{0*}

 $3875.2\pm0.7^{+0.3}$

🗣 Frascati, 10.04.2008

BELLE

3.88

3.9

3.92

3.96

3.98

3.94

PRD77.011102

347 fb⁻¹

<u>Even more</u>: $B \rightarrow YK$, $Y \rightarrow J/w$ $\rightarrow \pi^{\dagger}\pi^{-}\pi^{0}$

 The measured values are corrected for efficiency and resolution effects

$$\begin{split} M(Y) &= (3914.6^{+3.8}_{-3.4}(stat)^{+1.9}_{-1.9}(syst)) \text{ MeV/c}^2 \\ \Gamma(Y) &= (33^{+12}_{-8}(stat)^{+5}_{-5}(syst)) \text{ MeV} \end{split}$$

$$\mathsf{B} \to \mathsf{Y}$$

$$\mathcal{B}(B^{+}) = (4.9^{+1.0}_{-1.0}(stat)^{+0.5}_{-0.5}(syst)) \times 10^{-5}$$

$$\mathcal{B}(B^{0}) = (1.5^{+1.4}_{-1.2}(stat)^{+0.2}_{-0.2}(syst)) \times 10^{-5}$$

$$\mathcal{B}(B_{tot}^{+}) = (3.5^{+0.2}_{-0.2}(stat)^{+0.4}_{-0.4}(syst)) \times 10^{-4}$$

$$\mathcal{B}(B_{tot}^{0}) = (3.0^{+0.6}_{-0.6}(stat)^{+0.3}_{-0.3}(syst)) \times 10^{-4}$$

$$R_{1}(B^{0}/B^{+}) = 0.30^{+0.29}_{-0.24}(stat)^{+0.04}_{-0.01}(syst)^{\text{region}}_{\text{region}}$$

$$R_{2}(B^{0}/B^{+}) = 0.94^{+0.23}_{-0.21}(stat)^{+0.03}_{-0.02}(syst)^{\text{non}}_{\text{resonant}}_{\text{contribution}}$$

hep-ex/0711.2047 347 fb⁻¹

📲 Frascati, 10.04.2008

E. Prencipe

📲 Frascati, 10.04.2008

BOTTOMONIUM SPECTROSCOPY

2 h_b and 3 D wave states are narrow but not observed

Non BB decays

Transitions: Y(4S) → Y(2S)π⁺π⁻
Y(4S) → Y(1S)π⁺π⁻

Unexpected result:

E1M2/ E1E1

EXP	STATE	MASS (MeV/c ²)	Г (Me\/)	J ^{PC}	DECAY MODE	PRODUCTION MECHANISM
Belle CDF, DO BaBar	¥(3872)	3871.2±0.5	< 2.3	1**	π⁺π⁻Jψ π⁺π⁻π⁰Jψ	B decays, pp
Belle BaBar	X(3072)	3875.4±0.7 ^{+1.2} 3875.1 ^{+0.7} _{-0.5} ±0.5	3.0 ^{+1.9} ±0.9	(2** ?)	D ⁰ D ⁰ π ⁰ DD*	B decays
Belle	Z(3930)	3929±5±2	29±10±2	2**	$D^{0}D^{0}, D^{\dagger}D^{-}$	e+e⁻ →J/ψX
Belle BaBar	Y(3940)	3943±1.1±1.3 3914.6 ^{+3.8} ±1.9	87±22±26 33 ⁺¹² ±5	? ^{??}	ωJ/ψ	B decays
Belle	X(3940)	3942 ⁺⁷ ±6	37 ⁺²⁵ +8	? ?+	DD*	γ
Belle	Y(4008)	4008±40 ⁺⁷² -28	226±44 ⁺⁸⁷	1	π ⁺ π ⁻ Jψ	B decays
Belle	Y(4160)	4156 ⁺¹⁵ +15	13951 ¹¹¹ ±21	?**	D*D*	e+e⁻ →J/ψX
BaBar	Y(4175)	2175±10±15	58±16±20	1	K⁺K⁻π	ISR
Babar CLEO Belle	Y(4260)	4259±8 ^{±8} 4284 ⁺¹⁷ ₋₁₆ ±4 4247±12 ⁺¹⁷ ₋₃₂	88±23 ⁺⁶ 73 ⁺³⁹ -25 ^{±5} 108±19±10	1	π ⁺ π⁻Jψ π ⁰ π⁰Jψ Κ⁺Κ⁻Jψ	ISR
Babar Belle	Y(4350)	4324±24 4361±9±9	172±33 74±15±10	1	π⁺π⁻ψ(2S)	ISR
Belle	Z(4430)	4433±4±1	44:13 :59	? ??	$\pi^+\psi(2S)$	B decays
Belle	Y(4620)	4466±11±5	48±15±3	1	π ⁺ π ⁻ ψ(2S)	ISR

Theory still not clear.

Significant contribution from **BaBar** in these 9 years.

Important analyses are ongoing...

confirmed now also from BES

Backup slides

 D_{s0} *(2317) and D_{s1} (2460)

- Discovered 4 years ago in e⁺e⁻ → cc events; subsequently observed in B decays
- D_{s0}*(2317) and D_{s1}(2460) very well established and known experimentally
 - Masses and tight upper limits on widths
 - J^{P} : 0⁺ for $D_{s0}^{*}(2317)$ and 1⁺ for $D_{s1}(2460)$
 - decay modes and absolute branching fractions
- Interpretation of these new states still unclear!
 - One possibility: identify these 2 states as the 0⁺ and 1⁺ cs states
 - Strong difficulties within the potential model
 - **Other** possible interpretations under examination

PRD 74,032007 232 fb⁻¹

 $B(D_{-1}(2460)^+ \rightarrow D_{-1}^+ \pi^0 \gamma)$

Candidates / (3 MeV/c²)

Some additional plots $D_{sJ}(2460)^+ \rightarrow D_s^+ \pi^0 \gamma$ $D_{s1}^{*}(2317)^{+} \rightarrow D_{s}^{+}\pi^{0}$ N=3180±80 2 MeV/c² Bins Candidates / (5 MeV 1 700 1 000 1 000 1 000 Candidates / (10 MeV/c*) 002 002 400 D_s*(2112) N=560±40 200 ≴ignal Light shade: D_s*(2112) 800 Dark shade: 2.3 2.35 Ds*(2112)+ D_s^{*}(2317)⁺ reflection reflection 600 reflection Dark shade: 400 D_sJ(2460) reflection 100 200 S 2.2 2.3 2.6 $D_s^+ \pi^0$ Invariant Mass (GeV/c²) 2.1 2.2 2.3 2.5 $m = (2319.6 \pm 0.2 \pm 1.4) \text{ MeV/c}^2$ 2.6 $D^{*}_{*}\pi^{\circ}\gamma$ Invariant Mass (GeV/c²) **Γ**<3.8 MeV @ 95% CL established from B decay processes both states D_s(2460)⁺ →D_s⁺π⁺π Candidates / (10 MeV/c³) 00 00 000 00 00 00 00 $D_{s1}(2536)^{+} \rightarrow D_{s}^{+}\pi^{+}\pi^{-}$ $D_{sl}(2460)^+ \rightarrow D_s^+ \gamma$ 200 800 175 N=920±60 N=123±15 600 150 D.*(2317) N=193±22 D_c (2460) 125 100 75 ᡩᡡᡆ^ᡡᡡᡂᡂ^ᢙᢞᡡᡡᡂᡡ 50 ٥٢ 25 2.2 2.32.5 2.4 2.6 2.7 2.8 2.4 2.45 2.5 2.55 2.6 $D_s^+ \gamma$ Invariant Mass (GeV/ c^2) 2.35 $D_{*}^{+} \pi^{+} \pi^{-}$ Invariant Mass (GeV/c²) $m = (2534.6 \pm 0.3 \pm 0.7) \text{ MeV/c}^2$ $m = (2460.2 \pm 0.2 \pm 0.8) \text{ MeV/c}^2$ $m = (2460.2 \pm 0.2 \pm 0.8) \text{ MeV/c}^2$ Γ<3.5 MeV @ 95% CL Γ<2.5 MeV @ 95% CL **Γ**<3.5 MeV @ 95% CL $B(\underline{D_{sJ}(2460)^{+} \longrightarrow D_{s}^{+} \pi^{+} \pi^{-})}_{a} = 0.077 \pm 0.013 \pm 0.008$

Inclusive DK studies : more details

PRL 97, 222001 hep-ex/0606110 hep-ex/0607245 hep-ex/0606139 240 fb⁻¹

 $m(D_{sJ}^{*}(2860)) = 2856.6 \pm 1.5 \pm 5.0 \text{ MeV/c}^{2}$ $\Gamma(D_{sJ}^{*}(2860)) = 47 \pm 7 \pm 10 \text{ MeV}$ $e^+e^- \rightarrow D^0K^+X/D^+K^0_SX$ $p^*(DK) > 3.5 \text{ GeV/c}$

Belle: PRL 91 (2003) 262003 BaBar: PRD71 (2005) 071103 BaBar: PRD73 (2006) 011101 BaBar: PRD74 (2006) 071101 CDF: PRL93 (2004) 072001

Search for X(3872) charged partners

- Decay X(3872) \rightarrow J/ ψ p against charmonium hypothesis
- If X(3872) is not charmonium it could be isospin multiplet

1.7

Kana Managana (Cath

Comparison for X(3872) @ Babar

		ΔM (MeV/c ²)	R(R⁰/B⁺)	
	B→XK	(2.7±1.6±0.4)	0.41±0.24	1±0.05
	B →DD [*] K	(0.2±1.6)	1.33±0.68	8±0.24 Is it a molecular state?
				PRD71 (2005) 074005
The I	J= 1++ or J molecular hypot	Is it a 4-quark state?		
			_	PRD71 (2005) 014028

...what else?