

τ Physics: Theory Overview

A. Pich IFIC, Valencia

$$\begin{split} \Gamma(\tau \to \nu_{\tau} \ l \ \overline{\nu_{l}}) &= \frac{G_{F}^{2} \ m_{\tau}^{5}}{192 \ \pi^{3}} \ f(m_{l}^{2}/m_{\tau}^{2}) \ r_{\rm EW} \\ f(x) &= 1 - 8x + 8x^{3} - x^{4} - 12x^{2} \log x \\ r_{\rm EW} &= 0.9960 \end{split}$$
 (Marciano-Sirlin)

$$B_e = \frac{B_{\mu}}{0.972564 \pm 0.000010} = \frac{\tau_{\tau}}{(1632.1 \pm 1.4) \times 10^{-15} \text{s}}$$

$$(B_{\mu}/B_{e})_{\rm exp} = 0.9725 \pm 0.0039$$

 τ Physics

τ_{τ} , Br($\tau \rightarrow \mu$), Br($\tau \rightarrow e$) ~ 0.3% precision

Future Improvements: BABAR , BELLE , KEDR , BESIII , SuperB , ... $\delta m_{\tau} \sim 0.023 \text{ MeV} (12.7 \text{ ppm})$ BESIII

$$m_{\tau} = 1776.99 + 0.29_{-0.26} \text{ MeV} \quad (PDG06)$$

$$1776.61 \pm 0.13 \pm 0.35 \text{ MeV} \quad (BELLE)$$

$$1776.81 \pm 0.25_{-0.23} \pm 0.15 \text{ MeV} \quad (KEDR)$$

 τ Physics

LEPTON UNIVERSALITY

CH	A	D	G	5	

$B_{\tau \to \mu} / B_{\tau \to e}$	1.0000 ± 0.0020
$B_{\pi\to\mu}/B_{\pi\to e}$	1.0021 ± 0.0016
$B_{K\to\mu}/B_{K\to e}$	1.004 ± 0.007
$B_{K\to\pi\mu}/B_{K\to\pi e}$	1.002 ± 0.002
$B_{W\to\mu}/B_{W\to e}$	0.997 ± 0.010

 $B_{\tau \to e} \ \tau_{\mu} / \tau_{\tau}$ $\Gamma_{\tau \to \pi} / \Gamma_{\pi \to \mu}$ $\frac{\Gamma_{\tau \to K}}{B_{W \to \tau}} \frac{\Gamma_{K \to \mu}}{B_{W \to \mu}}$

 $\begin{array}{c} 1.0006 \pm 0.0022 \\ 0.996 \pm 0.005 \\ 0.979 \pm 0.017 \\ 1.039 \pm 0.013 \end{array}$

$$\begin{array}{c}
 B_{\tau \to \mu} \tau_{\mu} / \tau_{\tau} \\
 B_{W \to \tau} / B_{W \to e}
 \end{array}$$
 1.0005 ± 0.0023
 1.036 ± 0.014

τ Physics

LEPTON FLAVOUR VIOLATION

90% CL Upper Limits on $Br(I^- \rightarrow X^-)$ [BABAR / BELLE]

Decay	U.L.	Decay	U.L.	Decay	U.L.
$\mu^- \rightarrow e^- \gamma$	$1.2\cdot10^{-11}$	$\mu^- \rightarrow e^- e^+ e^-$	$1.0\cdot10^{-12}$	$\mu^- \rightarrow e^- \gamma \gamma$	$7.2 \cdot 10^{-11}$
$\tau^- \rightarrow e^- \gamma$	$1.1 \cdot 10^{-7}$	$\tau^- \rightarrow e^- e^+ e^-$	$3.6 \cdot 10^{-8}$	$\tau^- \rightarrow e^- e^+ \mu^-$	$2.7\cdot 10^{-8}$
$\tau^- \rightarrow \mu^- \gamma$	$4.5 \cdot 10^{-8}$	$\tau^- \rightarrow e^- \mu^+ \mu^-$	$3.7 \cdot 10^{-8}$	$\tau^- \rightarrow \mu^- e^+ \mu^-$	$2.3 \cdot 10^{-8}$
$\tau^-\!$	$2.0 \cdot 10^{-8}$	$\tau^-\!\!\rightarrow\mu^-\!\mu^+\mu^-$	$3.2 \cdot 10^{-8}$	$\tau^- \rightarrow e^- \pi^0$	$8.0\cdot10^{-8}$
$\tau^- \rightarrow \mu^- \pi^0$	$1.1 \cdot 10^{-7}$	$\tau^- \rightarrow e^- \eta'$	$1.6 \cdot 10^{-7}$	$\tau^- \rightarrow \mu^- \eta'$	$1.3 \cdot 10^{-7}$
$\tau^- \rightarrow e^- \eta$	$9.2 \cdot 10^{-8}$	$\tau^- \rightarrow \mu^- \eta$	$6.5\cdot10^{-8}$	$\tau^- \rightarrow e^- K^{*0}$	$7.8\cdot10^{-8}$
$\tau^- \rightarrow e^- K_S$	$5.6 \cdot 10^{-8}$	$\tau^- \rightarrow \mu^- K_S$	$4.9 \cdot 10^{-8}$	$\tau^- \rightarrow \mu^- \rho^0$	$6.8 \cdot 10^{-8}$
$\tau^- \rightarrow e^- K^+ K^-$	$1.4 \cdot 10^{-7}$	$\tau^- \rightarrow e^- K^+ \pi^-$	$1.6 \cdot 10^{-7}$	$\tau^- \rightarrow e^- \pi^+ K^-$	$3.2 \cdot 10^{-7}$
$\tau^- \rightarrow \mu^- K^+ K^-$	$2.5 \cdot 10^{-7}$	$\tau^- \rightarrow \mu^- K^+ \pi^-$	$3.2 \cdot 10^{-7}$	$\tau^- \rightarrow \mu^- \pi^+ K^-$	$2.6 \cdot 10^{-7}$
$\tau^- \rightarrow e^- \pi^+ \pi^-$	$1.2 \cdot 10^{-7}$	$\tau^- \rightarrow \mu^- \pi^+ \pi^-$	$2.9 \cdot 10^{-7}$	$\tau^- \rightarrow \Lambda \pi^-$	$7.2 \cdot 10^{-8}$
$\tau^- \rightarrow e^+ K^- K^-$	$1.5 \cdot 10^{-7}$	$\tau^- \rightarrow e^+ K^- \pi^-$	$1.8 \cdot 10^{-7}$	$\tau^- \rightarrow e^+ \pi^- \pi^-$	$2.0 \cdot 10^{-7}$
$\tau^- \rightarrow \mu^- K^{*0}$	$5.9 \cdot 10^{-8}$	$\tau^- \rightarrow e^- \phi$	$7.3 \cdot 10^{-8}$	$\tau^- \rightarrow \mu^- \omega$	$8.9 \cdot 10^{-8}$
$\tau^- \rightarrow \mu^+ K^- K^-$	$4.4 \cdot 10^{-7}$	$\tau^- \rightarrow \mu^+ K^- \pi^-$	$2.2 \cdot 10^{-7}$	$\tau^- \rightarrow \mu^+ \pi^- \pi^-$	$0.7 \cdot 10^{-7}$

τ Physics

Arganda-Herrero-Portolés 08

CMSSM Constrained MSSM–Seesaw Scenarios

NUHM

τ Physics

HADRONIC TAU DECAY

$$d_{\theta} = V_{ud} \ d + V_{us} \ s$$

Only lepton massive enough to decay into hadrons

$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to v_{\tau} + \text{Hadrons})}{\Gamma(\tau^- \to v_{\tau} \ e^- \ \overline{v_e})} \approx N_C \qquad ; \qquad R_{\tau} = \frac{1 - B_e - B_{\mu}}{B_e} = 3.639 \pm 0.011$$

 τ Physics

$$\frac{\sigma(e^+e^- \rightarrow \text{had})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)} = 12 \pi \operatorname{Im} \Pi_{\text{em}}(s)$$

$$\Pi_{\rm em}^{\mu\nu}(q) \equiv i \int d^4x \ e^{iqx} \left\langle 0 \left| T[J_{\rm em}^{\mu}(x) J_{\rm em}^{\nu}(0)] \right| 0 \right\rangle = \left(-g^{\mu\nu}q^2 + q^{\mu}q^{\nu} \right) \Pi_{\rm em}(q^2)$$

$$\frac{\sigma(e^+e^- \rightarrow \text{had})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)} = 12 \pi \, \text{Im} \, \Pi_{\text{em}}(s)$$

 $\Pi_{\rm em}^{\mu\nu}(q) \equiv i \int d^4 x \ e^{iqx} \left\langle 0 \left| T[J_{\rm em}^{\mu}(x) J_{\rm em}^{\nu}(0)] \right| 0 \right\rangle = \left(-g^{\mu\nu}q^2 + q^{\mu}q^{\nu} \right) \Pi_{\rm em}(q^2)$

$$R_{\tau} = \frac{\Gamma(\tau \rightarrow \nu_{\tau} + \text{had})}{\Gamma(\tau \rightarrow \nu_{\tau} e^{-} \overline{\nu_{e}})} = 12\pi \int_{0}^{m_{\tau}^{2}} dx \left(1 - \frac{s}{m_{\tau}^{2}}\right)^{2} \left[\left(1 + 2\frac{s}{m_{\tau}^{2}}\right) \text{Im} \Pi^{(1)}(s) + \text{Im} \Pi^{(0)}(s)\right]$$

 $\Pi^{(J)}(s) \equiv \left| V_{ud} \right|^2 \left[\Pi^{(J)}_{ud,V}(s) + \Pi^{(J)}_{ud,A}(s) \right] + \left| V_{us} \right|^2 \left[\Pi^{(J)}_{us,V}(s) + \Pi^{(J)}_{us,A}(s) \right]$

 $\Pi_{ij,J}^{\mu\nu}(q) \equiv i \int d^4x \ e^{iqx} \left\langle 0 \left| T[J_{ij}^{\mu}(x)J_{ij}^{\nu}(0)^{\dagger}] \right| 0 \right\rangle = \left(-g^{\mu\nu}q^2 + q^{\mu}q^{\nu} \right) \Pi_{ij,J}^{(1)}(q^2) + q^{\mu}q^{\nu} \Pi_{ij,J}^{(0)}(q^2)$

 τ Physics

Braaten-Narison-Pich

$$R_{\tau} \equiv \frac{\Gamma(\tau^{-} \to \nu_{\tau} + \text{had})}{\Gamma(\tau^{-} \to \nu_{\tau} e^{-} \overline{\nu_{e}})} = 12\pi \int_{0}^{1} dx \, (1-x)^{2} \left[(1+2x) \, \text{Im} \, \Pi^{(1)}(x \, m_{\tau}^{2}) + \, \text{Im} \, \Pi^{(0)}(x \, m_{\tau}^{2}) \right]$$

$$R_{\tau} = 6\pi i \oint_{|x|=1} dx \ (1-x)^2 \left[(1+2x) \ \Pi^{(0+1)}(x m_{\tau}^2) - 2x \ \Pi^{(0)}(x m_{\tau}^2) \right]$$

Braaten-Narison-Pich

$$R_{\tau} \equiv \frac{\Gamma(\tau^{-} \to v_{\tau} + \text{had})}{\Gamma(\tau^{-} \to v_{\tau} e^{-} \overline{v_{e}})} = 12\pi \int_{0}^{1} dx \ (1 - x)^{2} \left[(1 + 2x) \operatorname{Im} \Pi^{(1)}(x m_{\tau}^{2}) + \operatorname{Im} \Pi^{(0)}(x m_{\tau}^{2}) \right]$$

ľ

$$P_{\tau} = 6\pi i \oint_{|x|=1} dx (1-x)^{2} \left[(1+2x) \Pi^{(0+1)}(x m_{\tau}^{2}) - 2x \Pi^{(0)}(x m_{\tau}^{2}) \right]$$
$$\Pi^{(J)}(s) = \sum_{D=2n} \frac{C_{D}^{(J)}(s,\mu) \left\langle O_{D}(\mu) \right\rangle}{(-s)^{D/2}} \qquad \mathsf{OPE}$$

Braaten-Narison-Pich

$$R_{\tau} = \frac{\Gamma(\tau^{-} \to \nu_{\tau} + \text{had})}{\Gamma(\tau^{-} \to \nu_{\tau} e^{-} \overline{\nu_{e}})} = 12\pi \int_{0}^{1} dx (1-x)^{2} \left[(1+2x) \operatorname{Im} \Pi^{(1)}(x m_{\tau}^{2}) + \operatorname{Im} \Pi^{(0)}(x m_{\tau}^{2}) \right]$$

$$R_{\tau} = 6\pi i \oint_{|x|=1} dx (1-x)^{2} \left[(1+2x) \Pi^{(0+1)}(x m_{\tau}^{2}) - 2x \Pi^{(0)}(x m_{\tau}^{2}) \right]$$

$$R_{\tau} = N_C S_{\text{EW}} \left(1 + \delta_{\text{P}} + \delta_{\text{NP}} \right) = R_{\tau,V} + R_{\tau,A} + R_{\tau,S}$$

$$\begin{split} S_{\rm EW} &= 1.0201 \ (3) \qquad ; \qquad \qquad \delta_{\rm NP} &= 0.0001 \pm 0.0017 \\ \text{Marciano-Sirlin, Braaten-Li, Erler} & \text{Fitted from data} \end{split}$$

$$\delta_{\rm P} = a_{\tau} + 5.20 \ a_{\tau}^2 + 26 \ a_{\tau}^3 + \dots \approx 20\%$$

Re(s)

 $a_{\tau} \equiv \alpha_s(m_{\tau})/\pi$

 τ Physics

П

$$\begin{array}{c} \textbf{Perturbative:} \quad (\textbf{m}_{q}=0) \\ \hline \textbf{k}_{4} = 49.076 \quad \textbf{Baikov-Chetyrkin-KUhn} \\ -s \frac{d}{ds} \Pi^{(0+1)}(s) = \frac{1}{4\pi^{2}} \sum_{n=0}^{\infty} K_{n} \left(\frac{\alpha_{s}(-s)}{\pi}\right)^{n} \quad ; \quad K_{0} = K_{1} = 1 \quad , \quad K_{2} = 1.63982 \quad , \quad K_{3} = 6.37101 \\ \hline \textbf{b} \qquad \delta_{p} = \sum_{n=1}^{\infty} K_{n} A^{(n)}(\alpha_{s}) = a_{\tau} + 5.20 \; a_{\tau}^{2} + 26 \; a_{\tau}^{3} + 127 \; a_{\tau}^{4} + \cdots \\ A^{(n)}(\alpha_{s}) = \frac{1}{2\pi i} \oint_{|s|=1} \frac{dx}{x} (1 - 2x + 2x^{3} - x^{4}) \left(\frac{\alpha_{s}(-s)}{\pi}\right)^{n} = a_{\tau}^{n} + \cdots \quad ; \quad a_{\tau} = \alpha_{s}(m_{\tau})/\pi \\ \hline \textbf{Power Corrections:} \qquad \Pi^{(0+1)}_{OPE}(s) \approx \frac{1}{4\pi^{2}} \sum_{n\geq 2} \frac{C_{2n} \langle O_{2n} \rangle}{(-s)^{n}} \\ \hline \textbf{C}_{4} \langle O_{4} \rangle \approx \frac{2\pi}{3} \langle 0 | a_{s} G^{\mu\nu} G_{\mu\nu} | 0 \rangle \\ \delta_{NP} \approx \frac{-1}{2\pi i} \oint_{|s|=1} dx \; (1 - 3x^{2} + 2x^{3}) \sum_{n\geq 2} \frac{C_{2n} \langle O_{2n} \rangle}{(-xm_{\tau}^{2})^{n}} = -3 \frac{C_{6} \langle O_{6} \rangle}{m_{\tau}^{6}} - 2 \frac{C_{8} \langle O_{8} \rangle}{m_{\tau}^{8}} \\ \textbf{Suppressed by} \; m_{\tau}^{6} \qquad [additional chiral suppression in \; C_{6} \langle O_{6} \rangle^{V+4}] \end{array}$$

τ Physics

Similar predictions for $R_{\tau,V}$, $R_{\tau,A}$, $R_{\tau,S}$ and the moments

$$R_{\tau}^{kl}(s_0) \equiv \int_0^{s_0} ds \, \left(1 - \frac{s}{s_0}\right)^k \left(\frac{s}{m_{\tau}^2}\right)^l \frac{dR_{\tau}}{ds}$$

Different sensitivity to power corrections through k, I

The non-perturbative contribution to R_{τ} can be obtained from the invariant-mass distribution of the final hadrons:

$$\delta_{\rm NP} = 0.0001 \pm 0.0017$$

Davier et al. (ALEPH data)

τ Physics

$R_{\tau,V} = 1.783 \pm 0.011$; $R_{\tau,A} = 1.695 \pm 0.011$; $R_{\tau,V+A} = 3.478 \pm 0.010$ Davier et al

The most precise test of Asymptotic Freedom

 $\alpha_s^{\tau}(M_Z^2) - \alpha_s^Z(M_Z^2) = 0.0021 \pm 0.0011_{\tau} \pm 0.0027_Z$

SU(3) Breaking

$$R_{\tau}^{kl} = N_C S_{\rm EW} \left\{ \left(\left| V_{ud} \right|^2 + \left| V_{us} \right|^2 \right) \left[1 + \delta^{kl(0)} \right] + \sum_{D \ge 2} \left[\left| V_{ud} \right|^2 \delta_{ud}^{kl(D)} + \left| V_{us} \right|^2 \delta_{us}^{kl(D)} \right] \right\}$$

$$\delta R_{\tau}^{kl} = \frac{R_{\tau,V+A}^{kl}}{\left|V_{ud}\right|^2} - \frac{R_{\tau,S}^{kl}}{\left|V_{us}\right|^2} \approx N_C S_{\text{EW}} \sum_{D \ge 2} \left[\delta_{ud}^{kl(D)} - \delta_{us}^{kl(D)}\right]$$

τ Physics

Strange Spectral Function: SU(3) Breaking

(k,l)	ALEPH	OPAL
(0,0)	0.39 ± 0.14	0.26 ± 0.12
(1,0)	0.38 ± 0.08	0.28 ± 0.09
(2,0)	0.37 ± 0.05	0.30 ± 0.07
(3,0)	0.40 ± 0.04	0.33 ± 0.05
(4,0)	0.40 ± 0.04	0.34 ± 0.04

$$\delta R_{\tau}^{kl} = \frac{R_{\tau,V+A}^{kl}}{|V_{ud}|^2} - \frac{R_{\tau,S}^{kl}}{|V_{us}|^2} \approx 24 \frac{m_s^2(m_{\tau}^2)}{m_{\tau}^2} \Delta_{kl}(\alpha_s)$$

$$\longrightarrow \mathbf{m}_s(\mathbf{m}_{\tau}) \quad \text{determination}$$

V_{us} and QCD uncertainties

 τ Physics

$$\delta R_{\tau}^{kl} = \frac{R_{\tau,V+A}^{kl}}{|V_{ud}|^2} - \frac{R_{\tau,S}^{kl}}{|V_{us}|^2} \approx 24 \frac{m_s^2(m_{\tau}^2)}{m_{\tau}^2} \Delta_{kl}(\alpha_s)$$

- $\Delta_{kl}(\alpha_s)$ gets longitudinal (J=0) and transverse (J=0+1) contributions
- Divergent QCD series for J=0
- Longitudinal contribution determined through data:
 - Kaon pole $(K \rightarrow \mu \nu)$

(dominant J=0 contribution)

- Pion pole $(\pi \rightarrow \mu \nu)$
- $(K\pi)_{J=0}$ (S-wave $K\pi$ scattering)
- Smaller uncertainties

τ Physics

•

	$R^{00,L}_{us,A}$	$R^{00,L}_{us,V}$	$R^{00,L}_{ud,A}$
Theory:	-0.144 ± 0.024	-0.028 ± 0.021	$-(7.79\pm0.14)\cdot10^{-3}$
Phenom:	-0.135 ± 0.003	-0.028 ± 0.004	$-(7.77\pm0.08)\cdot10^{-3}$

$$\delta R_{\tau,\text{th}}^{00} \equiv \underbrace{0.1544 \ (37)}_{J=0} + \underbrace{0.062 \ (15)}_{m_{s}(m_{\tau}) = 0.100 \ (10)} = 0.216 \ (16)$$
Physics A. Pich - PhiPsi08

Large uncertainty from V_{us}

Strong sensitivity to V_{us}

 τ Physics

$$\left|V_{us}\right|^{2} = \frac{R_{\tau,S}^{00}}{\frac{R_{\tau,V+A}^{00}}{\left|V_{ud}\right|^{2}} - \delta R_{\tau,\text{th}}^{00}}$$

Gámiz-Jamin-Pich-Prades-Schwab

τ data: $R_{\tau,S}^{00} = 0.1686$ (47) $R_{\tau,V+A}^{00} = 3.471$ (11) PDG 06: $|V_{ud}| = 0.97377$ (27)

$$\left|V_{us}\right|^{2} = \frac{R_{\tau,S}^{00}}{\frac{R_{\tau,V+A}^{00}}{\left|V_{ud}\right|^{2}} - \delta R_{\tau,\text{th}}^{00}}$$

Gámiz-Jamin-Pich-Prades-Schwab

τ data: $R_{\tau,S}^{00} = 0.1686$ (47) $R_{\tau,V+A}^{00} = 3.471$ (11) PDG 06: $|V_{ud}| = 0.97377$ (27)

$$\delta R_{\tau,\text{th}}^{00} = 0 \implies |V_{us}| = 0.215 (3)$$

$$\left|V_{us}\right|^{2} = \frac{R_{\tau,S}^{00}}{\frac{R_{\tau,V+A}^{00}}{\left|V_{ud}\right|^{2}} - \delta R_{\tau,\text{th}}^{00}}$$

Gámiz-Jamin-Pich-Prades-Schwab

τ data: $R_{\tau,S}^{00} = 0.1686$ (47) $R_{\tau,V+A}^{00} = 3.471$ (11) **PDG 06:** $|V_{ud}| = 0.97377$ (27) δ $R_{\tau,th}^{00} = 0$ → $|V_{us}| = 0.215$ (3)

Taking as input (from non τ sources) $m_s(m_{\tau}) = 100 \pm 10$ MeV :

 $\delta R_{\tau,\text{th}}^{00} = 0.216 \ (16)$ $|V_{us}| = 0.2212 \pm 0.0031_{\text{exp}} \pm 0.0005_{\text{th}}$

$$\left|V_{us}\right|^{2} = \frac{R_{\tau,S}^{00}}{\frac{R_{\tau,V+A}^{00}}{\left|V_{ud}\right|^{2}} - \delta R_{\tau,\text{th}}^{00}}$$

Gámiz-Jamin-Pich-Prades-Schwab

τ data: $R_{\tau,S}^{00} = 0.1686$ (47) $R_{\tau,V+A}^{00} = 3.471$ (11) **PDG 06:** $|V_{ud}| = 0.97377$ (27) δ $R_{\tau,th}^{00} = 0$ → $|V_{us}| = 0.215$ (3)

Taking as input (from non τ sources) $m_s(m_{\tau}) = 100 \pm 10$ MeV :

$$\delta R_{\tau,\text{th}}^{00} = 0.216 \ (16)$$
 $|V_{us}| = 0.2212 \pm 0.0031_{\text{exp}} \pm 0.0005_{\text{th}}$

K₁₃: $|V_{us}| = 0.2233 \pm 0.0024$ $[f_+(0) = 0.97 \pm 0.01]$

The τ could give the most precise V₁₁₅ determination

 τ Physics

First Measurements from Babar and Belle

	Mode	$\mathscr{B}(10^{-3})$ [15]	Updated $\mathscr{B}(10^{-3})$ with results from [20–22]	
	$\overline{K^{-}}$	6.81 ± 0.23	[Replace with 7.15 ± 0.03]	
	$K^-\pi^0$	4.54 ± 0.30	Average with $4.16 \pm 0.18 \Rightarrow 4.26 \pm 0.16 \ (S = 1.0)$	
	$\overline{K}{}^{0}\pi^{-}$	8.78 ± 0.38	Average with $8.08 \pm 0.26 \Rightarrow 8.31 \pm 0.28$ (<i>S</i> = 1.3)	
	$K^-\pi^0\pi^0$	0.58 ± 0.24		S. Baneriee
	$\overline{K}{}^0\pi^-\pi^0$	3.60 ± 0.40		, ,
	$K^-\pi^+\pi^-$	3.30 ± 0.28	Average with $2.73 \pm 0.09 \Rightarrow 2.80 \pm 0.16$ (<i>S</i> = 1.9)	KAON'07
	$K^-\eta$	0.27 ± 0.06		
	$(\overline{K}3\pi)^-$ (estimated)	0.74 ± 0.30		
	$K_1(1270)^- \rightarrow K^- \omega$	0.67 ± 0.21		
	$(\overline{K}4\pi)^-$ (estimated) and $K^{*-}\eta$	0.40 ± 0.12		
	Sum	29.69 ± 0.86	Updated Estimate: 28.44 ± 0.74 [28.78 ± 0.71]	
Smaller $\tau \rightarrow K$ $R_{\tau,S}^{00}\Big _{OLD}$	to branching ratios $= 0.1686 (47)$	') -	smaller $R_{\tau,S} \longrightarrow$ $\Rightarrow R_{\tau,S}^{00} \Big _{NEW} = 0.16$	smaller V _{us} 17 (40)
$\left V_{us}\right _{OLD} = 0.221$	$2 \pm 0.0031_{exp} \pm 0.000$	005 _{th}	$ V_{us} _{\rm NEW} = 0.2165 \pm 0.00$	$26_{exp} \pm 0.0005_{th}$

Much more data coming. Precise measurement expected soon

τ Physics

Huge number of $\tau^+\tau^-$ events at the B Factories Br($\tau^- \rightarrow K_S \pi^- \nu_{\tau}$) = (0.404 ± 0.002_{stat} ±0.013_{syst}) %

Ongoing data analysis

Jamin-Pich-Portolés 08

$R\chi T$ Description of BELLE data

 $M_{K^*} = 895.3 \pm 0.2 \text{ MeV}$

 $\Gamma_{K^*} = 47.5 \pm 0.4 \text{ MeV}$

Rχ**T** normalization fixed **B**r($\tau^- \rightarrow K_S \pi^- \nu_\tau$)_{th} = (0.427 ± 0.024) %

 $Br(\tau \rightarrow K_{S}\pi^{-}\nu_{\tau})_{Belle} = (0.404 \pm 0.002_{stat} \pm 0.013_{syst})\%$

Prediction for K₁₃ Form Factor Slopes: $\lambda'_{+} = (25.20 \pm 0.33) 10^{-3}$; $\lambda''_{+} = (12.85 \pm 0.31) 10^{-4}$; $\lambda''_{+} = (9.56 \pm 0.28) 10^{-5}$ EXP: (Flavianet Kaon WG) $\lambda'_{+} = (25.2 \pm 0.9) 10^{-3}$; $\lambda''_{+} = (16 \pm 4) 10^{-4}$ τ Physics A. Pich - PhiPsi08

SUMMARY

The τ is a clean laboratory to test the Standard Model

- Precision physics
- QCD tests
- Open questions: (g-2)₁₁
- Hints of new physics: v's
- Future facilities: τcF, SuperB
- Tool for NP searches: LHC

There is an exciting future ahead

 τ Physics

The τ could give the most precise V_{us} determination

• From present τ data one gets:

$$|V_{us}| = 0.2165 \pm 0.0026_{exp} \pm 0.0005_{th}$$

Accuracy similar already to K₁₃:

 $|V_{us}| = 0.2234 \pm 0.0023$ $[f_+(0) = 0.97 \pm 0.01]$

Interesting challenge for the B Factories & BESIII

 τ Physics

A simultaneous $m_s \& V_{us}$ fit could be possible However:

□ Perturbative QCD corrections need to be better understood (CIPT)

$$\begin{split} &\Delta_{00}(\alpha_{\rm s})^{\rm L+T} = 0.753 \pm 0.214 \pm 0.065 \pm 0.063 \pm \dots \\ &\Delta_{10}(\alpha_{\rm s})^{\rm L+T} = 0.912 \pm 0.334 \pm 0.192 \pm 0.069 \pm \dots \\ &\Delta_{20}(\alpha_{\rm s})^{\rm L+T} = 1.055 \pm 0.451 \pm 0.330 \pm 0.232 \pm \dots \\ &\Delta_{30}(\alpha_{\rm s})^{\rm L+T} = 1.190 \pm 0.571 \pm 0.484 \pm 0.432 \pm \dots \\ &\Delta_{40}(\alpha_{\rm s})^{\rm L+T} = 1.324 \pm 0.697 \pm 0.657 \pm 0.676 \pm \dots \end{split}$$

Sizeable theoretical uncertainties

Resummations, pinched weights (Maltman & Wolfe), ...

Not enough sensitivity with present data

Large correlations. Low statistics. Missing decay modes ...

 τ Physics

Davier-Höcker-Zhang '05

Taking $V_{us} = 0.2225$ (21) :

Chen et al '01, J=0 included

$(l, l) \sim (M_{\rm e} V)$		$\sigma_{m_s}~({ m MeV})$						
(κ, ι)	m_s (MeV)	exp.	$ V_{us} $	α_s	$\langle m_s \bar{s}s \rangle$	trunc.	R-scale	th.
(0,0)	132	26	13	2	4	9	9	14
$(1,\!0)$	120	13	9	3	4	10	11	16
(2,0)	117	10	7	3	6	14	14	21
$(3,\!0)$	117	9	8	2	8	19	16	27
(4,0)	103	7	5	3	9	20	19	29

$$m_s(m_\tau) = (120^{+21}_{-26}) \text{ MeV}$$

$$m_s(2\,{\rm GeV}) = (116^{+20}_{-25})\,{\rm MeV}$$

 τ Physics

Gámiz et al '03, J=0 excluded

Moment	$m_s(m_{\tau})$ [MeV]
(0,0)	192 ± 72
(1,0)	164 ± 31
(2,0)	137 ± 20
(3,0)	115 ± 17
(4,0)	100 ± 17

 $m_s(m_{\tau}) = (122 \pm 17) \text{ MeV}$

 $m_s(2\,{\rm GeV}) = (117\pm17)\,{\rm MeV}$

□ Strong k dependence with ALEPH data (m_s decreases with increasing k)

Spectral function underestimated at large invariant masses Missing events / modes ($K\pi\pi$, $K\pi\pi\pi$, ...)

■ Much better behaviour with OPAL data: (0,0) → $V_{us} = 0.2208 (34)$ → $G_{ms}^{(2,0)} = (84 \pm 23) \text{ MeV}$, $m_s(2 \text{ GeV}) = (81 \pm 22) \text{ MeV}$

 \Box $\tau \rightarrow K\nu$ from $K \rightarrow \mu\nu + OPAL$:

$$V_{us} = 0.2220$$
 (33)

τ Physics

arXiv:0801.1817 [hep-ph]

 $|f_+(0)V_{\mu s}| = 0.2166 \pm 0.0005$

A. Pich - PhiPsi08

 τ Physics

$f_{+}(0) = 0.97 \pm 0.01$

Large O(p⁶) ChPT correction

K₁₃ Decays

(Bijnens-Talavera)

 $O(p^4)$

O(p⁶)