$(g-2)_{\mu}$ and physics beyond the SM

Dominik Stöckinger

Glasgow, Dresden

PHIPSI08, April 2008

Dominik Stöckinger

 $\langle \square
angle \, \langle \square
angle \, \rangle \, \langle \square
angle \, \rangle \, \langle \square
angle \, \rangle$ $(g-2)_{\mu}$ and physics beyond the SM

A 3σ deviation for $a_{\mu}^{\exp} - a_{\mu}^{SM}$ has been established!

- Which types of physics beyond the SM could explain this?
- What is the impact of a_µ on physics beyond the SM?

- Different types of new physics the Czarnecki/Marciano bound
- SUSY could explain the deviation
- 3 Examples for impact of a_{μ} on new physics

< 同 > < 三 > < 三

Outline

Different types of new physics — the Czarnecki/Marciano bound

2 SUSY could explain the deviation

3 Examples for impact of a_{μ} on new physics

Conclusions

Relation $a_{\mu}-m_{\mu}$

		In loops: new heavy particles, coupling to muons \Rightarrow
m_{μ} _		$\delta m_{\mu} \sim rac{c^2}{16\pi^2}~M$
a_{μ} _		$\delta oldsymbol{a}_{\mu} \sim rac{c^2}{16\pi^2} rac{m_{\mu}}{M}$
	generally:	$\frac{\delta m_{\mu}(\text{N.P.})}{m_{\mu}} = \boldsymbol{C} \iff \delta \boldsymbol{a}_{\mu}(\text{N.P.}) = \mathcal{O}(\boldsymbol{C}) \left(\frac{m_{\mu}}{M}\right)^{2}$

2

Relation a_{μ} – m_{μ}

Therefore, assuming $|\delta m_{\mu}/m_{\mu}| < 1$:

$$\delta a_{\mu} = C \left(rac{m_{\mu}}{M}
ight)^2, \qquad |C| < \mathcal{O}(1) \qquad [Czarnecki, Marciano'01]$$

э

N

generally:
$$\frac{\delta m_{\mu}(\text{N.P.})}{m_{\mu}} = C \Leftrightarrow \delta a_{\mu}(\text{N.P.}) = \mathcal{O}(C) \left(\frac{m_{\mu}}{M}\right)^2$$

Allows classification of types of new physics:

$$C = O(\frac{\alpha}{4\pi}),$$
 Z', W', extra dim., ...

$C = \mathcal{O}(1),$	radiative muon mass generation
	technicolor, [Czarnecki,Marciano '01]

$$C = O(\tan \beta \frac{\alpha}{4\pi}),$$
 supersymmetry

generally:
$$\frac{\delta m_{\mu}(\text{N.P.})}{m_{\mu}} = C \Leftrightarrow \delta a_{\mu}(\text{N.P.}) = \mathcal{O}(C) \left(\frac{m_{\mu}}{M}\right)^2$$

Allows classification of types of new physics:

$$\begin{split} \mathcal{C} &= \mathcal{O}(\frac{\alpha}{4\pi}), & Z', \ W', \ \text{extra dim., } \dots \\ \text{contributions very small!} \quad \delta a_{\mu} \sim 28 \times 10^{-10} \ \text{for M} < 100 \text{GeV} \\ \mathcal{C} &= \mathcal{O}(1), & \text{radiative muon mass generation} \\ \text{technicolor, } \dots \ _{\text{[Czarnecki,Marciano '01]}} \end{split}$$

$$C = \mathcal{O}(\tan \beta \frac{\alpha}{4\pi}),$$
 supersymmetry

generally:
$$\frac{\delta m_{\mu}(\text{N.P.})}{m_{\mu}} = C \Leftrightarrow \delta a_{\mu}(\text{N.P.}) = \mathcal{O}(C) \left(\frac{m_{\mu}}{M}\right)^2$$

Allows classification of types of new physics:

$$C = \mathcal{O}(\frac{\alpha}{4\pi}),$$
 Z', W', extra dim., ...

 $C = \mathcal{O}(1),$

radiative muon mass generation

contributions large! $\mathbf{C} = \mathcal{O}(\tan\beta\frac{\alpha}{4\pi}),$

technicolor, ... [Czarnecki, Marciano '01]

 $\delta a_{\mu} \sim 28 \times 10^{-10}$ for M>1TeV

0

generally:
$$\frac{\delta m_{\mu}(\text{N.P.})}{m_{\mu}} = C \Leftrightarrow \delta a_{\mu}(\text{N.P.}) = \mathcal{O}(C) \left(\frac{m_{\mu}}{M}\right)^2$$

Allows classification of types of new physics:

$$C = O(\frac{\alpha}{4\pi}), \qquad Z', W', \text{ extra dim., } \dots$$

C = O(1), radiative muon mass generation technicolor, ... [Czarnecki,Marciano '01]

 $C = O(\tan \beta \frac{\alpha}{4\pi}),$ supersymmetry fits well! $\delta a_{\mu} \sim 28 \times 10^{-10}$ for M~300GeV, $\tan \beta \sim 10$

- Different types of new physics can lead to very different contributions to a_µ
- *a*_µ is highly useful to discriminate between these different types of new physics

< 同 > < 三 > < 三

Outline

Different types of new physics — the Czarnecki/Marciano bound

SUSY could explain the deviation

3) Examples for impact of a_{μ} on new physics

Conclusions

a_{μ} and SUSY

SUSY is a particularly promising scenario: can nicely explain a_{μ} and is motivated in many other ways

Where does the tan β -enhancement come from? SUSY requires two Higgs doublets $H_{1,2}$:

$$\tan \beta = \frac{\langle H_2 \rangle}{\langle H_1 \rangle}, \qquad \mu = H_2 - H_1 \text{ transition}$$

• $\lambda_{\mu} \rightarrow \lambda_{\mu}^{\rm SM} \tan \beta$

• in a_{μ} this enhancement requires $H_2 - H_1$ transition

 \Rightarrow leading contributions $a_{\mu}^{\text{SUSY}} \propto \frac{\alpha}{4\pi} \tan \beta \operatorname{sign}(\mu) \frac{m_{\mu}^2}{M_{\text{SUSY}}^2}$

SUSY prediction

1-loop and most 2-loop contributions known

• remaining theory uncertainty $\delta a_{\mu}^{SUSY} \approx 3 \times 10^{-10}$ [DS '06] Approximate result:

$$a_{\mu}^{\rm SUSY} \approx 12 \times 10^{-10} \tan \beta \, {
m sign}(\mu) \left(rac{100 {
m GeV}}{M_{
m SUSY}}
ight)^2$$

e.g. $a_{\mu}^{\rm SUSY} = 24 \times 10^{-10}$ for

$$\begin{array}{ll} \tan\beta=2, & M_{\rm SUSY}=100~{\rm GeV}\\ \tan\beta=50, & M_{\rm SUSY}=500~{\rm GeV} \end{array} (\mu>0) \end{array}$$

 \Rightarrow SUSY could easily be the origin of the observed deviation!

Dominik Stöckinger

Numerical results

In the following: three examples for impact of a_{μ} on new physics

Outline

Different types of new physics — the Czarnecki/Marciano bound

2 SUSY could explain the deviation

Conclusions

"Superconservative approach"

"superconservative": general MSSM, require a_{μ}^{SUSY} within 5σ band \Rightarrow region under the curves is excluded by a_{μ} and nothing else

 a_{μ} provides indispensable information that cannot be obtained from other observables!

Dominik Stöckinger

Constrained MSSM scans

Constrained MSSM (only 4 parameters) (gravity-mediated susy-breaking)

Experimentally constrained by a_{μ} , $b \rightarrow s\gamma$, dark matter, EWPO, ...

[Ellis, Olive, Sandick '06]

Comprehensive CMSSM scan [Roszkowski et al] (similar scans by [Allanach et al, Ellis et al]):

 \Rightarrow not easy to accomodate all current observations in CMSSM \Rightarrow more precise determinations could seriously challenge CMSSM!

 a_{μ} plus other observables have the potential to rule out CMSSM even before LHC-data!

Dominik Stöckinger

Yukawa Unification

Yukawa Unification [G.G. Ross, M. Serna '07]

requires particular running of $m_b \leftrightarrow \delta m_\mu \leftrightarrow a_\mu$

in model considered by Ross, Serna:

$$rac{\mu M_3}{m_{\widetilde{b}}^2} \sim -0.5, \hspace{1em}$$
 while a_μ requires $\mu M_2 > 0$

 \Rightarrow $M_3 < 0, M_{1,2} > 0? \Rightarrow$ anomaly-mediated SUSY breaking?

 a_{μ} can provide hints even on ultra-high energy physics, such as Grand Unification and the mechanism of susy-breaking/mediation

Outline

- Different types of new physics the Czarnecki/Marciano bound
- 2 SUSY could explain the deviation
- 3 Examples for impact of a_{μ} on new physics

Conclusions

- *a_µ* provides one of the strongest indications for new physics at/below the TeV-scale
- a_{μ} useful to discriminate between different types of new physics
 - susy with tan β > 10, sign(μ)=+, $M_{susy} \sim 200...600$ GeV fits very well
 - strong constraints on susy and other types of new physics
- a_{μ} is independent from and complementary to collider data
- More precise determination very important and promising!