

Test of the Standard Model with Kaon decays

Barbara Sciascia LNF-INFN for the Kaon WG, FlaviaNet PhiPsi08 - LNF, 7 April 2008

1 FlaviaNet: WG on precise SM tests in K decays – B. Sciascia – PhiPsi08, LNF, 7 Apr 2008

Introduction

net Kaon WG

Analysis of leptonic and semileptonic kaon decays data

- provide precise determination of **fundamental SM couplings**;
- set stringent SM tests, almost free from hadronic uncertainties;
- discriminate between different NP scenarios.

$$\Gamma(K_{\ell 3(\gamma)}) = \frac{G_F^2 m_K^5}{192\pi^3} C_K S_{\text{ew}} |V_{us}|^2 f_+(0)^2 I_K^\ell(\lambda_{+,0}) \left(1 + \delta_{SU(2)}^K + \delta_{\text{em}}^{K\ell}\right)^2$$

$$\frac{\Gamma(K_{\ell 2(\gamma)}^{\pm})}{\Gamma(\pi_{\ell 2(\gamma)}^{\pm})} = \left|\frac{V_{us}}{V_{ud}}\right|^2 \frac{f_K^2 m_K}{f_\pi^2 m_\pi} \left(\frac{1 - m_\ell^2 / m_K^2}{1 - m_\ell^2 / m_\pi^2}\right)^2 \times (1 + \delta_{\text{em}})$$

• Test unitarity of the quark mixing matrix (V_{CKM}):

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 + \epsilon_{\rm NP}$$
 $\epsilon_{\rm NP} \sim M_W^2 / \Lambda_{\rm NP}^2$

→ present precision on V_{us} (dominant source of error) and V_{ub} negligible $(|V_{ub}^2| \sim 10^{-5})$ set bounds on NP well above 1 TeV.

- \bullet Comparison of Ke3 and Kµ3 modes, tests the lepton universality.
- 2 FlaviaNet: WG on precise SM tests in K decays B. Sciascia PhiPsi08, LNF, 7 Apr 2008

• The FlaviaNet Kaon WG (www.lnf.infn.it/wg/vus/). Recent kaon physics results come from many experimental (ISTRA+, KLOE, KTeV, NA48) and theoretical (Lattice, χ_{PT} ,). The main purpose of this working group is to perform precision tests of the Standard Model and to determine with high accuracy fundamental couplings (such as V_{us}) using all existing (published and/or preliminary) data on kaon decays, taking correlations into account.

• WG note: *Precision tests of the Standard Model with leptonic and semileptonic kaon decays*, arXiv:0801.1817 [hep-ph] 11 Jan 2008.

Summary of the talk

Global fits and averages:

- K_L , K_S , and K^{\pm} , dominant BRs and lifetime.
- Parameterization of the $K \rightarrow \pi$ interaction (form factor)

Physics results:

- $|V_{us}| \times f_+(0)$
- Test of lepton universality with $K_{\ell 3}$.
- $|\mathbf{V}_{us}|/|\mathbf{V}_{ud}| \times f_K/f_{\pi}$.
- Theoretical estimations of $f_+(0)$ and f_K/f_{π} .
- V_{us} and V_{ud} determinations.
- Bounds on helicity suppressed amplitudes.
- The special role of BR(K[±]e2)/BR(K[±] μ 2)

K_L leading branching ratios and τ_L

18 input measurements: Parameter Value	S
BR (K_{e3}) 0.4056(7)	1.1
5 KTeV ratios $BR(K_{\mu3}) = 0.2705(7)$	1.1
NA48 $K_{e3}/2t$ and $\Gamma(3\pi^0)$ BR $(3\pi^0)$ 0.1951(9)	1.2
4 KLOE BKS KLOE NA48 $\pi^+\pi^-/K_{}$ BR $(\pi^+\pi^-\pi^0)$ 0.1254(6)	1.1
KLOE , NA48 $\gamma\gamma/3\pi^0$ BR $(\pi^+\pi^-)$ 1.997 $(7) \times 10^{-3}$	1.1
PDG ETAFIT for $\pi^+\pi^-/\pi^0\pi^0$ BR $(2\pi^0)$ 8.64 $(4) \times 10^{-4}$	1.3
KLOE $\tau_{\rm L}$ from $3\pi^0$ BR $(\gamma\gamma)$ 5.47 $(4) \times 10^{-4}$	1.1
Vosburgh '72 $\tau_{\rm L}$ $\tau_{\rm L}$ 51.17(20) ns	1.1

8 free parameters, 1 constraint: ΣBR=1

Main differences wrt PDG06:

- For KLOE and KTeV, use values obtained before applying constraints.
- Make use of preliminary BR($3\pi^0$) and new BR($\pi^+\pi^-$)/BR(Ke3) from NA48
- Fit parameter $BR(\pi^+\pi^-)$ is understood to be inclusive of the DE component.

This fit $\chi^2/ndf = 20.2/11$ (4.3%); PDG06 fit: $\chi^2/ndf = 14.9/9$ (14.0%) Minor differences wrt PDG06:

• contrast between KLOE BR($3\pi^0$) and other inputs involving BR($2\pi^0$) and BR($3\pi^0$)

• **treatment of the correlated KLOE and KTeV inputs**: more uniform scale factor in this fit and significantly smaller uncertainty for BR(Ke3).

K_S leading branching ratios and τ_S

4 input measurements:

KLOE BR(Ke3)/BR($\pi\pi$) KLOE BR($\pi\pi$)/BR($\pi^0\pi^0$) Universal lepton coupling NA48 BR(Ke3) τ_s : non CPT-constrained fit value, dominated by 2002 NA48 and 2003 KTeV measurements

4 free parameters: $K_{S}\pi\pi$, $K_{S}\pi^{0}\pi^{0}$, $K_{S}e^{3}$, $K_{S}\mu^{3}$, 1 constraint: $\Sigma BR=1$

- KLOE meas. completely determine the leading BR values.
- NA48 Ke3 input improve the BR(Ke3) accuracy of about 10%.
- BR(K_se3)/BR(K_Le3) from NA48 not included (need of a K_L and K_s combined fit)
- Combined fit would be useful in properly account for preliminary NA48 $\Gamma(K_L \rightarrow 3\pi^0)$ and PDG ETAFIT, used in the K_L fit.

K[±] leading branching ratios and τ_{\pm}

26 input measurements: 5 older τ values in PDG $2 \text{ KLOE } \tau$ **KLOE BR**($\mu\nu$) **KLOE** Ke3, $K\mu3$, and $K\pi2$ BRs **ISTRA**+ $K_{e3}/\pi \pi^0$ NA48/2 $K_{e3}/\pi \pi^0$, $K_{u3}/\pi \pi^0$ E865 K_{e3}/K dal 3 old $\pi\pi^0/\mu\nu$ **2 old** *Ke3*/**2** body 3 Kµ3/Ke3 (2 old) 2 old + 1 KLOE results on 3π

7 free parameters,1 constraint: ΣBR=1

Parameter	Value	S
$BR(K_{\mu 2})$	63.57(11)%	1.1
$BR(\pi\pi^0)$	20.64(8)%	1.1
$BR(\pi\pi\pi)$	5.595(31)%	1.0
$BR(K_{e3})$	5.078(26)%	1.2
$BR(K_{\mu 3})$	3.365(27)%	1.7
$BR(\pi\pi^0\pi^0)$	1.750(26)%	1.1
$ au_{\pm}$	12.384(19) ns	1.7

Don't use the 6 BR meas. from Chiang;

- no implementation of radiative corrections
- 6 BR constrained to sum to unit.
- the correlation matrix not available. Try to discard many other old meas.:
- no recent meas. involving $BR(\pi\pi\pi)$
- fit instable if only recent are used.

Evolution of the average BR values

^{NET}Kaon WG

- This fit $\chi^2/ndf = 42/20$ (0.31%); PDG06 fit: $\chi^2/ndf = 30/19$ (5.2%)
- If 5 older τ_{\pm} measurements replaced by PDG avg (with S=2.1), χ^2 / ndf = 24/16 (8.4%) with no significant changes to central values or errors.
- include many new results
- some conflict among newer meas. involving BR(Ke3): the pulls are +1.04,

- Experimental or theoretical inputs to define *t*-dependence of $f_{+,0}(t)$.
- $f_{-}(t)$ term negligible for K_{e3} .
- Taylor expansion:

$$\tilde{f}_{+,0}(t) \equiv \frac{f_{+,0}(t)}{f_{+}(0)} = 1 + \lambda'_{+,0} \ \frac{t}{m_{\pi}^2} + \frac{1}{2} \ \lambda''_{+,0} \ \left(\frac{t}{m_{\pi}^2}\right)^2 + \ \dots$$

• Obtain λ' , λ'' , from fit to data distributions (more accurate than theor. predictions).

• λ' and λ'' are strongly correlated: -95% for $f_+(t)$, and -99.96% for $f_0(t)$.

One parameter parameterizations:

- Pole parameterization (what vector/scalar state should be used?) $\tilde{f}_{+,0}(t) = \frac{M_{V,S}^2}{M_{V,S}^2 - t}$
- Dispersive approach plus $K\pi$ scattering data for both $f_+(t)$ and $f_0(t)$

10 FlaviaNet: WG on precise SM tests in K decays – B. Sciascia – PhiPsi08, LNF, 7 Apr 2008

Plavi A net Kaon WG

Vector form factor

Quadratic expansion:

- Measurements from ISTRA+, KLOE, KTeV, NA48 with K_Le3 and K^-e3 decays.
- Good fit quality: $\chi^2/ndf=5.3/6(51\%)$ for all data; $\chi^2/ndf=4.7/4(32\%)$ for K_L only
- The significance of the quadratic term is 4.2σ from all data and 3.5σ from K_L only.
- Using all data or K_L only changes the space phase integrals I_{e3}^0 and I_{e3}^{\pm} by 0.07%.
- Errors on I_{e3} are significantly smaller when K⁻ data are included.

A **pole parameterization** is in good agreement with present data:

 $\tilde{f}_{+}(t) = M_V^2/(M_V^2 - t)$, with $M_V \sim 892$ MeV $\lambda' = (m_{\pi^+}/M)^2$; $\lambda'' = 2\lambda'^2$

• KLOE, KTeV, NA48 quote value for M_V for pole fit to K_Le3 data ($\chi^2/ndf=1.8/2$)

• The values for λ_{+}' and λ_{+}'' from pole expansion are in agreement with quadratic fit results.

• Using quadratic averages or pole fit results changes I_{e3}^0 by 0.03%.

Improvements: **dispersive parameterization** for $f_+(t)$, with analytical and unitarity properties and a correct threshold behavior, (e.g.Passemar arXiv:0709.1235[hep-ph]) Dispersive results for λ_+ and λ_0 are in agreement with pole parameterization.

Iavi A Vector and scalar form factor from K_{µ3} Net Kaon WG

- λ_{+}' , λ_{+}'' and λ_{0} measured for Kµ3 from ISTRA+, KLOE, KTeV, and NA48.
- NA48 result lies out of correlation directions in the $[\lambda_{+}', \lambda_{+}'', \lambda_{0}]$ space.
- Fit probability varies from 1×10^{-6} (with NA48) to 22.3% (without NA48).

• Neglecting a quadratic term in the param. of scalar FF implies: $\lambda_0' \rightarrow \lambda_0' + 3.5\lambda_0''$ • Because of correlation is not possible measure λ_0'' at any plausible level of stat

• Because of correlation, is not possible measure λ_0'' at any plausible level of stat.

Vector and scalar form factor from $K_{\ell 3}$

• Slope parameters λ_{+}' , λ_{+}'' and λ_{0} from ISTRA+, KLOE, KTeV, and NA48.

lavi

Kaon WG

		K_L and K^-	K_L only	
	Measurements	16	11	
	χ^2/ndf	$54/13~(7 imes 10^{-7})$	$33/8~(8 imes 10^{-5})$	
	$\lambda'_{+} imes 10^3$	$24.9 \pm 1.1 \ (S = 1.4)$	$24.0 \pm 1.5 \ (S = 1.5)$	Averages of
	$\lambda_+'' imes 10^3$	$1.6 \pm 0.5 \ (S = 1.3)$	$2.0 \pm 0.6 \ (S = 1.6)$	quadratic fit
	$\lambda_0 imes 10^3$	$13.4 \pm 1.2 \ (S = 1.9)$	$11.7 \pm 1.2 \ (S = 1.7)$	results for
	$\rho(\lambda'_+,\lambda''_+)$	-0.94	-0.97	
	$\rho(\lambda'_+,\lambda_0)$	+0.33	+0.72	Ke3 and
	$\rho(\lambda''_+,\lambda_0)$	-0.44	-0.70	Kµ3 slopes.
Space integral	$I(K_{e3}^{0})$	0.15457(29)	0.1544(4)	
used for the	$I(K_{e3}^{\pm})$	0.15892(30)	0.1587(4)	
V f(0)	$I(K^{0}_{\mu 3})$	0.10212(31)	0.1016(4)	
determination	$I(K_{\mu3}^{\pm})$	0.10507(32)	0.1046(4)	
	$\rho(I_{e3}, I_{\mu3})$	+0.63	+0.89	

- Adding Kµ3 data to the fit doesn't cause significant changes to I_{e3}^0 and I_{e3}^{\pm} .
- The significance of the quadratic term $\lambda_{+}^{\prime\prime}$ is strong (3.6 σ from to fit to all data).
- NA48: $\Delta[I(K\mu 3)] = 0.6\%$, but Ke3+K μ 3 average gives $\Delta[V_{us}f_{+}(0)] = -0.08\%$.
- 13 FlaviaNet: WG on precise SM tests in K decays B. Sciascia PhiPsi08, LNF, 7 Apr 2008

Inputs from theory:

- S_{EW} Universal short distance EW correction (1.0232)
- $\frac{\delta^{K}_{SU(2)}}{\text{strong SU}(2) \text{ breaking}}$
- δ*Kℓ* Long distance EM effects
- $f_{+}^{K^{0}\pi}(0)$ Hadronic matrix element at zero momentum transfer (t=0)

Inputs from experiment:

- $\Gamma(K_{l3(\gamma)})$ Branching ratios with well determined treatment of radiative decays; lifetimes
- $I_{K\ell}(\lambda)$ Phase space integral: λ 's parameterize form factor dependence on t:

 K_{e3} : only λ_+

 $K_{\mu3}$: need λ_+ and λ_0

14 FlaviaNet: WG on precise SM tests in K decays – B. Sciascia – PhiPsi08, LNF, 7 Apr 2008

CT

(values used to extract $|V_{us}|f_{+}(0)$)

- δ_{em} for full phase space: all measurements assumed fully inclusive.
- Different estimates of δ_{em} agree within the quoted errors.
- Available correlation matrix between different corrections.

16 FlaviaNet: WG on precise SM tests in K decays – B. Sciascia – PhiPsi08, LNF, 7 Apr 2008

Test of Lepton Universality from K^l3

• Test of Lepton Flavor Universality: comparing Ke3 and Kµ3 modes constraints possible anomalous LF dependence in the leading weak vector current. Evaluate $R_{K\mu3/Ke3}$: $\frac{\Gamma(K_{\mu3})}{\Gamma(K_{e3})} = \left(\frac{G_F^{\mu}}{G_E^{\mu}}\right)^2 \frac{I_K^{\mu}}{I_E^{\mu}} \frac{(1+\delta_K^{\mu})^2}{(1+\delta_K^{\mu})^2}$

Compare experimental results with SM prevision:

– lavi

aon WG

$$\mathbf{r}_{\mu\mathbf{e}} = \frac{(R_{K\mu3/Ke3})_{\text{obs}}}{(R_{K\mu3/Ke3})_{\text{SM}}} = \frac{\Gamma(K_{\mu3})}{\Gamma(K_{e3})} \frac{I_K^e}{I_K^\mu} \frac{(1+\delta_K^e)^2}{(1+\delta_K^\mu)^2} = \frac{\mathbf{G}_F^\mu}{\mathbf{G}_F^e}$$

Using FlaviaNet results get accuracy ~0.5%, $K_L r_{\mu e} = 1.0049(61)$ $K^{\pm} r_{\mu e} = 1.0029(86)$ Average $r_{\mu e} = 1.0043(52)$

Comparable with other determinations:

• τ decays: $(r_{\mu e})_{\tau} = 1.0005(41)$ (PDG06)

•
$$\pi$$
 decays: $(\dot{r}_{\mu e})_{\pi} = 1.0042(33)$

• Comparing values obtained for K_L and K^{\pm} (without $\delta^{K}_{SU(2)}$ correction) allows the empirical evaluation of SU(2) breaking correction : 2.81(38)%. To be compared with χ_{PT} prediction 2.36(22)%. Recent analyses point to ~3%.

agree well with this value; use RBC-UKQCD07 value: $f_+(0) = 0.9644(49) (0.5\%)$ accuracy, also syst. err.).

Inputs from experiment:

 $\Gamma(\pi, K_{l2(\gamma)})$ **BR** with well determined treatment of radiative decays; **lifetimes**

Inputs from theory:

 $C_{K,\pi}$ Rad. inclusive EW corr. f_K/f_{π} Not protected by the Ademollo-Gatto theorem: only lattice.

• Lattice calculation of $f_{\rm K}/f_{\pi}$ and radiative corrections benefit of cancellations.

• Use HPQCD-UKQCD07 value: $f_{\rm K}/f_{\pi} = 1.189(7)$.

A test of lattice calculations

Scalar form factor $f_0(t) = \tilde{f}_0(t) f_+(0)$ extrapolation at **Callan-Treiman** point:

$$\tilde{f}_0(\Delta_{K\pi}) = \frac{f_K}{f_\pi} \frac{1}{f(0)} + \Delta_{CT}, \quad \Delta_{CT} \simeq -3.4 \times 10^{-3}$$

• links $f_{+}(0)$ and $f_{\rm K}/f_{\pi}$ with λ_0 measured in Kµ3 decays.

aon WG

Lavi A V_{ud} , V_{us} and V_{us}/V_{ud} *Net Kaon WG* K13: $|V_{us}| f_{+}(0) = 0.2166(5)$ and $f_{+}(0) = 0.964(5)$, obtain $|V_{us}| = 0.2246(12)$ K12: $|V_{us}|/|V_{ud}| f_K/f_{\pi} = 0.2760(6)$ and $f_K/f_{\pi} = 1.189(7)$, obtain $|V_{us}|/|V_{ud}| = 0.2321(15)$ V_{ud} from nuclear β decay: $V_{ud} = 0.97418(26)$ [Hardy-Towner, nucl-th 0710.3181]

Fit (no CKM unitarity constraint):

$$V_{ud} = 0.97417(26); V_{us} = 0.2253(9)$$

 $\chi^2/ndf = 0.65/1 (41\%)$

• Unitarity:
$$1 - V_{ud}^2 - V_{us}^2 = 0.0002(6)$$

• The test on the unitarity of CKM can be also interpreted as a **test of the universality** of lepton and quark gauge coupling: $G_{\rm CKM} \equiv G_{\mu} \left[|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \right]^{1/2}$ $= (1.1662 \pm 0.0004) \times 10^{-5} \text{ GeV}^{-2}$ $G_{\mu} = (1.166371 \pm 0.000007) \times 10^{-5} \text{ GeV}^{-2}$

Fit (with CKM unitarity constraint): $V_{us} = 0.2255(7) \chi^2/ndf = 0.8/2 (67\%)$

$K_{\mu 2}$: sensitivity to NP

lavi A net Kaon WG

Comparison of V_{us} from $K_{\ell 2}$ (helicity suppressed) and from $K_{\ell 3}$ (helicity allowed) To reduce theoretical uncertainties study the quantity:

$$R_{l23} = \left| \frac{V_{us}(K_{\ell 2})}{V_{us}(K_{\ell 3})} \times \frac{V_{ud}(0^+ \to 0^+)}{V_{ud}(\pi_{\ell 2})} \right|$$

Within SM $R_{\ell 23} = 1$; NP effects can show as scalar currents due to a charged Higgs:

$$R_{l23} = \left| 1 - \frac{m_{K^+}^2}{M_{H^+}^2} \left(1 - \frac{m_d}{m_s} \right) \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta} \right| \stackrel{\textcircled{\basel{theta}}}{\longrightarrow} \\ R_{t23} \text{ is accessible via BR(K_{\mu 2})/BR(\pi_{\mu 2}), V_{us}f_{+}(0), \\ \text{and } V_{ud}, \text{ and } \mathbf{f}_{K}/\mathbf{f}_{\pi}/\mathbf{f}_{+}(0) \text{ determinations.} \\ \bullet \text{ Using } K^{\pm} \text{ fit results, assuming unitarity for } K_{t3}, \\ \text{and using } \mathbf{f}_{K}/\mathbf{f}_{\pi}/\mathbf{f}_{+}(0) \text{ from lattice: } \mathbf{R}_{t23} = 1.004(7). \\ \bullet \text{ Uncertainty dominated by } \mathbf{f}_{K}/\mathbf{f}_{\pi}/\mathbf{f}_{+}(0). \\ \bullet 95\% \text{ CL excluded region (with } \mathbf{\varepsilon}_{0} \sim 0.01). \\ \bullet \text{ In } \tan\beta-M_{H\pm} \text{ plane, } R_{t23} \text{ fully cover the region uncovered by } \mathbf{BR}(\mathbf{B} \rightarrow \tau \mathbf{v}). \\ \hline M_{H\pm} (\text{GeV}) \\ \hline 100 & 200 & 300 & 400 & 500 \\ \hline \end{array}$$

Measurement of $R_K = \Gamma(K_{e2}) / \Gamma(K_{\mu 2})$

let Kaon WG

lav

• PDG06: 5% precision from 3 old mnts

• 2 preliminary meas. from NA48 (see M.Raggi talk); waiting for new data result.

• 1 preliminary from KLOE see (A.Passeri talk); waiting for final.

• New average: R_K=2.457(32)×10⁻⁵.

• Perfect agreement with SM expectations: $R_K^{SM}=2.477(1)\times 10^{-5}$.

• In SUSY(MSSM) LFV appear at 1-loop level (effective $H^+\ell\nu_{\tau}$ Yukawa interaction). For moderately large tan β values, enhance R_K up to few %.

• The world average gives strong constrains for tan β and $M_{H\pm}$.

• 95%-CL excluded regions in the tan β - M_H plane, for $\Delta_{13} = 10^{-4}$, 0.5×10^{-4} , 10^{-3} .

- Dominant K_S , K_L , and K^{\pm} BRs, and lifetime known with very good accuracy.
- Dispersive approach for form factors.
- Constant improvements from lattice calculations of $f_+(0)$ and f_K/f_{π} : Callan-Treiman relation allows checks from measurements; lack of sys. errors; need to average different evaluations.
- $|V_{us}| f_{+}(0)$ at 0.2% level.
- Test of LU with K13 decays with 0.5% accuracy.
- $|V_{us}|$ measured with 0.4 accuracy (with $f_+(0)=0.9644(49)$) Dominant contribution to uncertainty on $|V_{us}|$ still from $f_+(0)$. CKM unitarity test satisfied at 0.3σ level test of lepton-quark universality

• Comparing $|V_{us}|$ values from Kµ2 and K13, exclude large region in the $(m_H, \tan\beta)$ plane, complementary to results from B $\rightarrow \tau \nu$ decays.

Additional information

K[±] leading branching ratios and τ_{\pm}

No significant differences in the fit if the final KLOE measurement of K^{\pm} lifetime is used instead of the preliminary one (FlaviaNet note):

]	FlaviaNet note		$\tau^{\pm}(\text{KLOE}) = 12.347(30) \text{ ns}$
Parameter	Value	S	
$BR(K_{\mu 2})$	63.57(11)%	1.1	
$BR(\pi\pi^0)$	20.64(8)%	1.1	
$BR(\pi\pi\pi)$	5.595(31)%	1.0	← 5.593(30)%
$\mathrm{BR}(K_{e3})$	5.078(26)%	1.2	
$BR(K_{\mu 3})$	3.365(27)%	1.7	
$BR(\pi\pi^0\pi^0)$	1.750(26)%	1.1	← 1.749(26)%
$ au_{\pm}$	12.384(19) ns	1.7	\leftarrow 12.379(19) ns

$$\tilde{f}_{+}(t) = \exp\left[\frac{t}{m_{\pi}^{2}}\left(\Lambda_{+} + H(t)\right)\right]$$

$$\tilde{f}_{+}(t) = 1 + \lambda_{+}\frac{t}{m^{2}} + \frac{\lambda_{+}^{2} + p_{2}}{2}\left(\frac{t}{m^{2}}\right)^{2} + \frac{\lambda_{+}^{3} + 3p_{2}\lambda_{+} + p_{3}}{6}\left(\frac{t}{m^{2}}\right)^{3}$$

$$\frac{p_{n}}{f_{+}(t)} \frac{\tilde{f}_{0}(t)}{f_{0}(t)}$$

$$p_{2} \times 10^{4} \quad 5.84 \pm 0.93 \quad 4.16 \pm 0.50$$

$$p_{3} \times 10^{4} \quad 0.30 \pm 0.02 \quad 0.27 \pm 0.01$$

🗕 lav

Kaon WG

Table 1: Constants appearing in the disper-sive form of vector and scalar form factors.

$$\tilde{f}_0(t) = \exp\left[\frac{t}{\Delta_{K\pi}}(\ln C - G(t))\right]$$
$$\tilde{f}_0(t) = 1 + \lambda_0 \frac{t}{m^2} + \frac{\lambda_0^2 + p_2}{2} \left(\frac{t}{m^2}\right)^2 + \frac{\lambda_0^3 + 3p_2\lambda_0 + p_3}{6} \left(\frac{t}{m^2}\right)^3$$

With or without NA48 Kµ3 data

	K_L and K^-	K_L only	K_L and K^-	K_L only
Measurements	16	11	13	8
χ^2/ndf	$54/13~(7 \times 10^{-7})$	$33/8~(8 \times 10^{-5})$	13/9~(24.9%)	9/5~(12.3%)
$\lambda'_{+} \times 10^3$	$24.9 \pm 1.1 \ (S=1.4)$	$24.0 \pm 1.5 \ (S = 1.5)$	25.0 ± 0.8	24.5 ± 1.1
$\lambda_{+}'' \times 10^3$	$1.6 \pm 0.5 \ (S = 1.3)$	$2.0 \pm 0.6~(S=1.6)$	1.6 ± 0.4	1.8 ± 0.4
$\lambda_0 \times 10^3$	$13.4 \pm 1.2~(S=1.9)$	$11.7 \pm 1.2~(S=1.7)$	16.0 ± 0.8	14.8 ± 1.1
$\rho(\lambda'_+,\lambda''_+)$	-0.94	-0.97	-0.94	-0.95
$\rho(\lambda'_+,\lambda_0)$	+0.33	+0.72	+0.26	+0.28
$\rho(\lambda''_+,\lambda_0)$	-0.44	-0.70	-0.37	-0.38
$I(K_{e3}^{0})$	0.15457(29)	0.1544(4)	0.15459(20)	0.15446(27)
$I(K_{e3}^{\pm})$	0.15892(30)	0.1587(4)	0.15894(21)	0.15881(28)
$I(K^{0}_{\mu 3})$	0.10212(31)	0.1016(4)	0.10268(20)	0.10236(28)
$I(K_{\mu 3}^{\pm})$	0.10507(32)	0.1046(4)	0.10559(20)	0.10532(29)
$\rho(I_{e3}, I_{\mu 3})$	+0.63	+0.89	+0.59	+0.62
wNA48-w/oNA	48: -0.00002 (0.019	%) -0.00006 (0.04%	b) $\Delta I(K^0e3)$	
$-0.00002 (0.01\%) -0.00011 (0.07\%) \Delta I(K^{\pm}e^{3})$				
	-0.00056 (0.559	%) -0.00076 (0.75%)	$\Delta I(K^0 \mu 3)$	
	-0.00052 (0.490	%) -0.00072 (0.69%	$\Delta I(K^{\pm}u3)$	

Lepton universality from $K_{e2}/K_{\mu 2}$

SM: no hadronic uncertainties (no f_{K}) $\rightarrow 0.4 \times 10^{-3}$

In MSSM, LFV can give up to % deviations

[Masiero, Paradisi, Petronzio]

$$R_{K} \approx \frac{\Gamma(K \rightarrow e \mathbf{v}_{e}) + \Gamma(K \rightarrow e \mathbf{v}_{\tau})}{\Gamma(K \rightarrow \mu \nu_{\mu})}$$

with effective coupling:

$$eH^{\pm}
u_{ au}
ightarrow rac{g_2}{\sqrt{2}} rac{m_{ au}}{M_W} \Delta_R^{31} an^2 eta$$

$$R_{\rm K} \approx R_{\rm K}^{\rm SM} [1 + \frac{m_{\rm K}^{4}}{m_{\rm H}^{4}} - \frac{m_{\tau}^{2}}{m_{\rm e}^{2}} |\Delta^{\rm R}_{31}|^{2} \tan^{6}\beta]$$

1% effect ($\Delta_{31}^{R} \sim 5x10^{-4}$, tan $\beta \sim 40$, m_H ~ 500 GeV) not unnatural **Present accuracy on R_K** @ 6%; need for precise (<1%) measurements

lavi A net Kaon WG

• Quadratic from ISTRA+, KLOE, KTeV, NA48 with K_L and K^- decays.

	K_L and K^- data	K_L data only
	4 measurements	3 measurements
	$\chi^2/\text{ndf} = 5.3/6 \ (51\%)$	$\chi^2/\text{ndf} = 4.7/4 \ (32\%)$
$\lambda'_+ imes 10^3$	25.2 ± 0.9	24.9 ± 1.1
$\lambda_+'' imes 10^3$	1.6 ± 0.4	1.6 ± 0.5
$\rho(\lambda'_+, \lambda +'')$	-0.94	-0.95
$I(K_{e3}^0)$	0.15465(24)	0.15456(31)
$I(K_{e3}^{\pm})$	0.15901(24)	0.15891(32)

- The significance of the quadratic term is 4.2σ from all data and 3.5σ from K_L only.
- Using all data or K_L only changes the space phase integrals I_{e3}^0 and I_{e3}^{\pm} by 0.07%.
- Errors on I_{e3} are significantly smaller when K⁻ data are included.

• KLOE, KTeV, NA48 quote value for M_V for pole fit to K_Le3 data.

Experiment	$M_V \; ({\rm MeV})$	$\langle M_V \rangle = 875 \pm 5 \text{ MeV}$
KLOE	$870\pm6\pm7$	$\chi^2/\mathrm{ndf} = 1.8/2$
KTeV	881.03 ± 7.11	$\lambda'_{+} \times 10^3 = 25.42(31)$
NA48	859 ± 18	$\lambda_+'' = 2 \times \lambda_+'^2$
		$I(K_{e3}^0) = 0.15470(19)$

• The values for λ_{+} 'and λ_{+} " from pole expansion are in agreement with quadratic fit results.

• Using quadratic averages or pole fit results changes I_{e3}^0 by 0.03%.