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plan of the talk

.

• current experimental value of the anomaly

• current status of the theoretical calculation

• recent results (mostly by S. Laporta)
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Anomalous magnetic moment of the electron

if ~µ is the magnetic moment of the electron and ~s its spin

~µ = ge

e~

2mc
~s

where ge is the gyromagnetic ratio; the Dirac equation gives ge = 2 for a free

electron – but ge 6= 2 (Breit) for a bound electron (ge-bound), so in general

ge = 2(1 + ae)

where ae = 1
2
(g − 2) is the anomaly.

in QED, ge 6= 2, or ae 6= 0 even for the free electron.

Experimental values of the free electron ae (current main problem: cavity shift)

1012 ae(exp) = 1 159 652 188.4 (4.3)[3.7 ppb] Dehmelt 1987, UW

= 1 159 652 180.85(.76)[0.66 ppb] Gabrielse 2006, Harvard

= 1 159 652 180.73(.28)[0.24 ppb] Gabrielse 2008, Harvard
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Latest Experimental value

New Measurement of the Electron Magnetic Moment and the Fine Structure Constant

D. Hanneke, S. Fogwell, and G. Gabrielse*

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 4 January 2008; published 26 March 2008)

A measurement using a one-electron quantum cyclotron gives the electron magnetic moment in Bohr

magnetons, g=2 � 1:001 159 652 180 73 �28� [0.28 ppt], with an uncertainty 2.7 and 15 times smaller than

for previous measurements in 2006 and 1987. The electron is used as a magnetometer to allow line shape

statistics to accumulate, and its spontaneous emission rate determines the correction for its interaction

with a cylindrical trap cavity. The new measurement and QED theory determine the fine structure

constant, with ��1 � 137:035 999 084 �51� [0.37 ppb], and an uncertainty 20 times smaller than for any

independent determination of �.

DOI: 10.1103/PhysRevLett.100.120801 PACS numbers: 06.20.Jr, 12.20.Fv, 13.40.Em, 14.60.Cd

The electron magnetic moment � is one of the few

measurable properties of one of the simplest of elementary

particles—revealing its interaction with the fluctuating

QED vacuum, and probing for size or composite structure

not yet detected. What can be accurately measured is g=2,

the magnitude of � scaled by the Bohr magneton, �B �
e@=�2m�. For an eigenstate of spin S,

� � �
g

2
�B

S

@=2
; (1)

with g=2 � 1 for a point electron in a renormalizable Dirac

description. QED predicts that vacuum fluctuations and

polarization slightly increase this value. Physics beyond

the standard model of particle physics could make g=2
deviate from the Dirac/QED prediction (as internal quark-

gluon substructure does for a proton).

The 1987 measurement that provided the accepted g=2
for nearly 20 years [1] was superceded in 2006 by a

measurement that used a one-electron quantum cyclotron

[2]. Key elements were quantum-jump spectroscopy and

quantum nondemolition (QND) measurements of the low-

est cyclotron and spin levels [3], a cylindrical Penning trap

cavity [4] (Fig. 2), inhibited spontaneous emission [5], and

a one-particle self-excited oscillator (SEO) [6]. This Letter

reports an improved measurement that has a 2.7 and

15 times lower uncertainty than the 2006 and 1987 mea-

surements, respectively, and confirms a 1.8 standard devia-

tion shift of the 1987 value [Fig. 1(a)]. The interaction of

the electron and its surrounding trap cavity is probed by

measuring g=2 and the electron’s spontaneous emission

rate as a function of magnetic field, thereby determining

the corrections needed for good agreement between mea-

surements at different fields. The electron is also used as its

own magnetometer to accumulate quantum-jump line

shape statistics over days, making it possible to compare

methods for extracting the resonance frequencies.

The new measurement and recently updated QED theory

[7] determine � with an uncertainty 20 times smaller than

does any independent method [Fig. 1(b)]. The uncertainty

in � is now limited a bit more by the need for a higher-

order QED calculation (underway [7]) than by the mea-

surement uncertainty in g=2. The accuracy of the new g
sets the stage for an improved CPT test with leptons. It also

will allow an improved test of QED, and will be part of the

discovery of low-mass dark-matter particles or the elimi-

nation of this possibility [8], when a better independent

measurement of � becomes available.

Figure 3 represents the lowest cyclotron and spin energy

levels for an electron weakly confined in a vertical mag-

netic field Bẑ and an electrostatic quadrupole potential.

The latter is produced by biasing the trap electrodes of

Fig. 2. The measured cyclotron frequency �fc � 149 GHz
(blue in Fig. 3) and the measured anomaly frequency ��a �
173 MHz (red in Fig. 3) mostly determine g=2 [2]

g

2
’ 1�

��a � ��2
z=�2 �fc�

�fc � 3�=2� ��2
z=�2 �fc�

�
�gcav

2
; (2)

with only small adjustments for the measured axial fre-

quency ��z � 200 MHz, the relativistic shift �=�c �
h�c=�mc

2� � 10�9, and the cavity shift �gcav=2. The latter

is the fractional shift of the cyclotron frequency caused by

the interaction with radiation modes of the trap cavity. The

Brown-Gabrielse invariance theorem [9] has been used to

eliminate the effect of both quadratic distortions to the

electrostatic potential, and misalignments of the trap elec-

trode axis with B. Small terms of higher order in ��z= �fc are

neglected.

FIG. 1. Most accurate measurements of the electron g=2 (a),

and most accurate determinations of � (b).

PRL 100, 120801 (2008)
P H Y S I C A L R E V I E W L E T T E R S week ending

28 MARCH 2008

0031-9007=08=100(12)=120801(4) 120801-1  2008 The American Physical Society
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ae and QED

the theoretical expression for ae is

ae = ae(QED)

+∆ae(µ) + ∆ae(τ) + ∆ae(hadronic) + ∆ae(weak)

+∆ae(NP)

small terms:

∆ae(µ) = 2.71 × 10−12

∆ae(τ) = 0.01 × 10−12

∆ae(hadronic) = 1.671(19) × 10−12 '
(

me

mµ

)2

∆aµ(hadronic)

∆ae(weak) = 0.030(01) × 10−12
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NP – New Physics

The constraint on NP depends on the experimental error – but the dependence on

unknown new particles is quadratic in the ratio of the masses (for large masses)

∆ae(NP) '
(

me

mµ

)2

∆aµ(NP)

experimental error on ae: ∆ae(exp) = 0.28 × 10−12

experimental values of the µ anomaly

1012 aµ(exp) = 1 165 920 800(600)[517 ppb] E821 Brookhaven, 2004

∆aµ(exp)

∆ae(exp)
= 2100

(

mµ

me

)2

= 43000

the µ anomaly is still more constraining on NP by a factor 20.
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(strictly) QED contribution

ae(QED) is the QED contribution with electron loops only

and depends only on the fine structure constant α

ae(QED) = C1

(α

π

)

+ C2

(α

π

)2

+ C3

(α

π

)3

+ C4

(α

π

)4

+ C5

(α

π

)5

+ . . .

C1 =
1

2
(Schwinger 1948) 1 diagram

C2 =
197

144
+

1

12
π2 − 1

2
π2 ln 2 +

3

4
ζ(3)

e

= −0.328 478 965 579 . . ., (Petermann, Sommerfield 1957) 7 diagrams
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(strictly) QED contribution

3 loops:

C3 =
83

72
π2ζ(3) − 215

24
ζ(5) +

100

3

[(

a4 +
1

24
ln4 2

)

− 1

24
π2ln2 2

]

− 239

2160
π4 +

139

18
ζ(3) − 298

9
π2ln 2 +

17101

810
π2 +

28259

5184

e

= 1.181 241 456 . . ., (S.Laporta, E.R. 1996) 72 diagrams

ζ(p) =
∞
∑

n=0

1

np
, a4 =

∞
∑

n=0

1

2nn4
,

C3

(α

π

)3

= 14 804.20× 10−12 , ∆ae(exp) = 0.28× 10−12
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4-loop coefficient

e e
d d

. . .

891 diagrams

The 4-loop coefficient is known only numerically.

Only a few diagrams are known in analytical form.

Numerical values are obtained by using MonteCarlo integration of huge

11-dimensional integrands (... and fixing minor bugs underway)

C4 = −1.5098(384) (Kinoshita, 1999)

C4 = −1.7283(35) (Kinoshita, 2003) shift of -0.24 due to the discovery of one error

C4 = −1.9144(35) (Kinoshita, 2007) shift of -0.22 due to the discovery of another error

C4

(α

π

)4

= (55.73± 0.10) × 10−12 , ∆ae(exp) = 0.28× 10−12
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at 5 loops QED

the numerical evaluation of the 5 loop contribution is underway (Kinoshita)

guess: C5 = 0.0± 4

C5

(α

π

)5

= (0± 0.27) × 10−12 , ∆ae(exp) = 0.28× 10−12

same order of magnitude as the current experimental error !
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ae, α and QED

QED=QED(α) QED + α → ae

QED + ae → α

QED + ae + α → real check

best independent experimental values of α from

α2 =
2R∞

c

(

mu

me

) (

MX

mu

)(

h

MX

)

where mu is the unit of mass, MX the mass of the atom X and (h/MX) is

measured by recoil spectroscopy

best results

α−1(Cs) = 137.036 000 00(110) (8.0 ppb) NIST, 2006

α−1(Rb) = 137.035 998 78 (91) (6.7 ppb) ENS, 2006

much larger than the (0.24 ppb) error in ae(exp);

(relatively) weak check of QED

E.Remiddi, Status of QED prediction of the electron g-2. , Frascati, 7 April 2008 Page 11



α from ae and QED

by combining available theory and the Harvard 2008 value of ae

α−1(ae) = 137.035 999 084 (33)(39)

= 137.035 999 084 (51) [0.37 ppb]
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ae and α

New Measurement of the Electron Magnetic Moment and the Fine Structure Constant

D. Hanneke, S. Fogwell, and G. Gabrielse*

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 4 January 2008; published 26 March 2008)

A measurement using a one-electron quantum cyclotron gives the electron magnetic moment in Bohr

magnetons, g=2 � 1:001 159 652 180 73 �28� [0.28 ppt], with an uncertainty 2.7 and 15 times smaller than

for previous measurements in 2006 and 1987. The electron is used as a magnetometer to allow line shape

statistics to accumulate, and its spontaneous emission rate determines the correction for its interaction

with a cylindrical trap cavity. The new measurement and QED theory determine the fine structure

constant, with ��1 � 137:035 999 084 �51� [0.37 ppb], and an uncertainty 20 times smaller than for any

independent determination of �.

DOI: 10.1103/PhysRevLett.100.120801 PACS numbers: 06.20.Jr, 12.20.Fv, 13.40.Em, 14.60.Cd

The electron magnetic moment � is one of the few

measurable properties of one of the simplest of elementary

particles—revealing its interaction with the fluctuating

QED vacuum, and probing for size or composite structure

not yet detected. What can be accurately measured is g=2,

the magnitude of � scaled by the Bohr magneton, �B �
e@=�2m�. For an eigenstate of spin S,

� � �
g

2
�B

S

@=2
; (1)

with g=2 � 1 for a point electron in a renormalizable Dirac

description. QED predicts that vacuum fluctuations and

polarization slightly increase this value. Physics beyond

the standard model of particle physics could make g=2
deviate from the Dirac/QED prediction (as internal quark-

gluon substructure does for a proton).

The 1987 measurement that provided the accepted g=2
for nearly 20 years [1] was superceded in 2006 by a

measurement that used a one-electron quantum cyclotron

[2]. Key elements were quantum-jump spectroscopy and

quantum nondemolition (QND) measurements of the low-

est cyclotron and spin levels [3], a cylindrical Penning trap

cavity [4] (Fig. 2), inhibited spontaneous emission [5], and

a one-particle self-excited oscillator (SEO) [6]. This Letter

reports an improved measurement that has a 2.7 and

15 times lower uncertainty than the 2006 and 1987 mea-

surements, respectively, and confirms a 1.8 standard devia-

tion shift of the 1987 value [Fig. 1(a)]. The interaction of

the electron and its surrounding trap cavity is probed by

measuring g=2 and the electron’s spontaneous emission

rate as a function of magnetic field, thereby determining

the corrections needed for good agreement between mea-

surements at different fields. The electron is also used as its

own magnetometer to accumulate quantum-jump line

shape statistics over days, making it possible to compare

methods for extracting the resonance frequencies.

The new measurement and recently updated QED theory

[7] determine � with an uncertainty 20 times smaller than

does any independent method [Fig. 1(b)]. The uncertainty

in � is now limited a bit more by the need for a higher-

order QED calculation (underway [7]) than by the mea-

surement uncertainty in g=2. The accuracy of the new g
sets the stage for an improved CPT test with leptons. It also

will allow an improved test of QED, and will be part of the

discovery of low-mass dark-matter particles or the elimi-

nation of this possibility [8], when a better independent

measurement of � becomes available.

Figure 3 represents the lowest cyclotron and spin energy

levels for an electron weakly confined in a vertical mag-

netic field Bẑ and an electrostatic quadrupole potential.

The latter is produced by biasing the trap electrodes of

Fig. 2. The measured cyclotron frequency �fc � 149 GHz
(blue in Fig. 3) and the measured anomaly frequency ��a �
173 MHz (red in Fig. 3) mostly determine g=2 [2]

g

2
’ 1�

��a � ��2
z=�2 �fc�

�fc � 3�=2� ��2
z=�2 �fc�

�
�gcav

2
; (2)

with only small adjustments for the measured axial fre-

quency ��z � 200 MHz, the relativistic shift �=�c �
h�c=�mc

2� � 10�9, and the cavity shift �gcav=2. The latter

is the fractional shift of the cyclotron frequency caused by

the interaction with radiation modes of the trap cavity. The

Brown-Gabrielse invariance theorem [9] has been used to

eliminate the effect of both quadratic distortions to the

electrostatic potential, and misalignments of the trap elec-

trode axis with B. Small terms of higher order in ��z= �fc are

neglected.

FIG. 1. Most accurate measurements of the electron g=2 (a),

and most accurate determinations of � (b).

PRL 100, 120801 (2008)
P H Y S I C A L R E V I E W L E T T E R S week ending

28 MARCH 2008

0031-9007=08=100(12)=120801(4) 120801-1  2008 The American Physical Society
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Improving the 4 loop calculation

We (mostly S. Laporta) are trying to improve C4

• to provide a check ;

• to reduce the error.

The by now standard approach (implemented by S.L. in his computer programs)

is:

• Extraction of the contribution to g-2 from each diagram as a sum of scalar

loop integrals.

• Reduction of each contribution to the combination of a (small) number of

Master Integrals.

• high-precision numerical calculation of the Master Integrals.

• Cross-checks of procedures, intermediate and final results

the first step is almost trivial (with an algebraic program like, say, SCHOONSCHIP

or FORM)
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Reduction to Master Integrals

The scalar loop integrals are reduced to Master Integrals by exploiting the

integration by parts identities (Chetyrkin, Tkachov 1981) in the

D-continuous regularization scheme.

Not surprisingly, the Laporta algorithm is used for solving the identities:

• an essential point of the algorithm is the ordering of the scalar integrals;

• a sufficiently large system of identities is built, containing all the relevant scalar

integrals and more identities than integrals;

• as a rule, a large linear system of identities is obtained, up to 106. . .107

identities for graph.

• the system is then solved, one equation at the time, with the Gauss

substitution rule, by expressing “more difficult” integrals (within the ordering

rule) in terms of “simpler” ones;
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Reduction to Master Integrals

As a result all the integrals are reduced to a combination of irreducible master

integrals Mj

ae(diagram) =
N

∑

j=1

pj(D)

qj(D)
Mj(D)

where rj(D), sj(D) are polynomials in the dimension D with integer coefficients.

• at 3-loop, N = 18, i.e. the final result from all the graphs is expressed in terms

of 18 Master Integrals only;

• at 4-loop, N ∼ 300 is expected.

some graphs without electron loops were already processed
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the 47 4-loop electron self-masses without electron loops

green,red = reduced to Master Integrals (work in progress. . . )
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Contribution of a 4-loop quadruple-cross diagram

�
��

T
TT = {23299 integrals} =

140
∑

j=1

pj(D)

qj(D)
Mj(D) 140 Master Integrals

M1 M.I. with 11 denominators (still to be evaluated)

p1(D) =polynomial of degree 11

q1(D) =5(D − 1)(D − 2)(D − 3)(5D − 16)(5D − 18)(5D − 22)

M140 M.I. with 4 denominators (factorizes into 4 1-loop tadpoles)

p140(D) =polynomial of degree 58

q140(D) =5184000D(D + 4)(D + 2)(D − 1)2(D − 3)5(D − 4)4

(D − 5)3(D − 6)(D − 8)(2D − 5)2(2D − 7)4(2D − 9)2(2D − 11)

(2D − 13)(3D − 8)2(3D − 10)3(3D − 11)2(3D − 13)(4D − 11)

(5D − 12)(5D − 13)(5D − 14)(5D − 16)(5D − 17)(5D − 18)

(5D − 19)(5D − 21)(5D − 22)(7D − 16)(10D2 − 59D + 86)
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Evaluation of the Master Integrals

M140 is trivial!

= M140 =
1

ε4(1 − ε)4

with ε = 4−D
2

.

The evaluation of the other MI’s is not trivial.

A few analytic results are available, but the analytic evaluation of all the MI’s

does not seem to be at present a realistic possibility.

But a High precision numerical algorithm has been developped by S. Laporta a

few yeas ago (2000).
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High-precision numerical calculation of MI’s

Given a master integral M(D)

• choose a denominator in M(D)

• consider the set of the integrals M(n, D) where that denominator is raised to

the power n

• construct a (system of) difference equation in n for the M(n, D)

• solve the system by expansion in factorial series or by Laplace

transformation.

Advantages:

• No numerical integration

• The calculation of multi-loop integrals (in any number of loops) is reduced to

sums of series in one variable.

• Arbitrary precision obtainable (such as 100-1000 digits).
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Semi-analytic value of a Master Integral

as an example, consider M139, which is not trivial; a semi-analytic approach gives

= M139 = − 5

2ε4
− 45

4ε3
− 4255

144ε2
− 106147

1728ε

+
π
√

3

240
(297C − 1477E) − 2320981

20736
+ O(ε)

C =
4π2

27

1
∫

0

dx√
1 − x

2F
2
1

(

1
3

2
3

1
; x

)

= 7.396 099 534 768 919 553 449 114 417 961 526 519 642 . . .

E =
4π2

27

1
∫

0

dx√
1 − x

2F
2
1

(

1
3
−

1
3

1
; x

)

= 2.376 887 326 184 666 003 152 855 958 761 330 926 023 . . .
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Precise numerical value of a Master Integral

The Laporta High-precision numerical algorithm gives

= M139 = − 5

2ε4
− 45

4ε3
− 4255

144ε2
− 106147

1728ε
− 141.72215618664768694996791

− 521.14654568600250441775466ε − 3347.9933650782886117865341ε2

− 17951.3774774809944931097622ε3 − 101753.8165331173182139560386ε4 + . . .
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