Electromagnetic Form Factors in the Time Like Domain

F. Maas GSI/Mainz University in collaboration with the IPN group

PhiPsi08 Frascati, April 7, 2008

Outline

EM Form Factor in the time like region

Existing Data (p
 p -> e⁺e⁻, e⁺e⁻ -> p
 p, e⁺e⁻ -> γpp)
 most recent data from BaBar

Possibilities in PANDA

QCD-Renormalisation à la QED

- origin of nucleon mass, effective degrees?

- quark and gluon condensates?
- structure of the nucleon -> Form Factor

Electromagnetic Form Factor vector current of quarks $Q_f q_{Y\mu}q$ Pauli Dirac < N(p') $Q_u u_{\gamma_\mu} u + Q_d d_{\gamma_\mu} d + ... |N(p)> =$ $F_1(q^2) Y_{\mu} + i(K_p/2M_p) F_2(q^2) \sigma_{\mu\nu}q^{\mu} |p>$ $G_{E} = F_{1} + F_{2}$ $G_{M} = F_{1} + T F_{2}$ vector current: two form factors internal structure of hadron ground state Dirac Pauli $F_1^p(q^2=0) = 1$ $\mathsf{F}_2^{\mathsf{p}}(\mathsf{q}^2) = 1$ $F_1^n(q^2=0) = 0$ $F_2^n(q^2) = 1$

EM form factor ($q^2 < 0$) recent data

"Polarisation transfer"-technique: $\mu_P G_E \neq G_M$

Definitions q² < 0 $q^2 > 0$ space like time like $F_1(q^2)$ $4M_p^2$ 0 -7 2 3 5 -6 -5 -3 -2 -1 1 4 6 7 q² [GeV²c²] p e' e me<<mp p' p e^+ annihilation electron scattering

Form Factor real 'Form Factor complex

connected by Dispersion relations no interference in cross section |F1|, |F2|

Definitions $q^2 < 0$ $q^2 > 0$ space like time like $F_1(q^2)$ $4M_p^2$ 0 2 5 3 -7 -6 -5 -3 -2 -1 4 6 7 q² [GeV²c²] Form Factor complex Form Factor real connected by Dispersion relations no interference in cross section imaginary $|F_1|, |F_2|$ Part:

Polarisation

Observables

F ₁ (q ²)	q ² < 0 space like		q² > 0 time like						
			4N	Ŋ _p ²、					
-7	-6 -5 -4 -3 -2 -	-1 0	1	2	3	4	5 Q	⁶ 2 [G	7 eV ² c ²
For	m Factor real		For	m F	act	or	com	ple	×

cross section (Rosenbluth) no single spin observables double spin observables cross section (Rosenbluth) single spin observables double spin observables

Imaginary Part of Time Like FF

Single-spin polarization effects and the determination of timelike proton form factors

October 15-16, 2007

128

SLAC

Initial State Radiation (BaBar)

Modern particle factories such as **DA** Φ **NE or PEP-II are designed for a fixed center-of-mass-energy**: e.g. $\sqrt{s} = m_{\gamma(4S)} = 10.6$ GeV in case of PEP-II

Energy-Scan impossible!

Complementary approach :

Consider events with Initial State Radiation (ISR)

Data comes as a by-product to the main physics goals of the particle factories

EM form factor (q² > 0) Babar: Initial state radiation (ISR), radiative return

Thanks to V. Zallo and F. Annulli INFN Frascati

EM form factor (q² > 0) Babar: Initial state radiation (ISR), radiative return

Data

Rosenbluth Technique (time like)

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \rho(s)}{4s} \left(|G_M^p(s)|^2 (1 + \cos^2(\theta)) + \frac{1}{\tau} |G_E^p(s)|^2 \sin^2(\theta) \right)$$

 $\tau = s/4M_p^2$ $G_E = F_1 + F_2$ $G_M = F_1 + \tau F_2$ at threshold: $G_E = G_M$ two approaches:

assume GE/GM

<-> extract GE and GM

EM form factor $(q^2 > 0)$

Adone e⁺e⁻: 25, 69 ev. ELPAR pp: 34 ev. DM1,2 e⁺e⁻: 63, 172 ev. $|G_E|/|G_M| = 0.34$ PS170 pp: 3667 ev. $|G_E|/|G_M| \approx 1$ E760 pp: 29 ev. E835 pp: 206 ev.

CLEO e⁺e⁻: 14 ev. BES e⁺e⁻: higher stat BaBar e⁺e⁻: high stat

All data: Measure absolute cross section $G_E = G_M$

$e^+e^- \rightarrow p\overline{p}$ angular distribution

 $\cos \theta_p$ distributions form threshold up to 3 GeV [intervals in $E_{CM} \equiv q$ (GeV)]

from Simone Pacetti ECT* - Trento, February 25, 2008

ISR Physics at BABAR

PRD73, 012005

EM form factor $(q^2 > 0)$ $|G_E|/|G_M|$ from dispersion relations

EM form factor $(q^2 > 0)$ $|G_E|/|G_M|$

 $\sqrt{4M_p^2}$

PANDA in FAIR

GSI today

- antiprotons
- rare isotopes
- heavy ion beams
- plasma physics

FAIR future facility Official Start: 7. November 2007

PANDA in FAIR

GSI today

- antiprotons
- rara isatana
- rare isotopes
- heavy ion beams
- plasma physics

FAIR future facility Official Start: 7. November 2007

PANDA: the detector

use PID capability of each subdetector

Detection and idenfication in the different regions

Background in pp -> e+e-

 Reactions with at least 3 particles produced:
 (e⁺e⁻X, π⁺π⁻X,...) Particle identification and kinematics constraints \rightarrow no problem (still to be quantified) \checkmark Reactions with 2 charged particles ($\pi^+\pi^-$) σ(π⁺π⁻)/σ(e⁺e⁻) ≈ 10⁶ (2µb/8pb at q²=9.(GeV/c)²) need rejection of $\bar{p}p \rightarrow \pi^+ \pi^-$ by 10⁻⁸ binary event, mean reject. of 10^{-4} per π^+ and per $\pi^$ very close kinematics PID is crucial, EMC, DIRC, dE/dx

can we separate $\pi^+\pi^-/e^+e^-$

preliminary: efficient for e^+e^- and misidentification based on E/p, PID from DIRC and EMC, kinemat. fit

	$e^+ e^-$ no QED corr.	$e^+ e^-$ w/ QED corr.	π^+ π^-
charged	-	60,76%	8,49 * 10 ⁻³
very loose	73,10%	57,69%	5,0 * 10 ⁻⁶
loose	70,60%	55,81%	6 * 10 ⁻⁷
tight	58,37%	46,15%	1 * 10 ⁻⁷
very tight	48,91%	38,21%	< 10 ⁻⁷

very promising

can we separate G_E and G_M

Rosenbluth Technique (time like)

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \rho(s)}{4s} \left(|G_M^p(s)|^2 (1 + \cos^2(\theta)) + \frac{1}{\tau} |G_E^p(s)|^2 \sin^2(\theta) \right)$$

$$\tau = s/4M_p^2$$

Summary

- electromagnetic form factors: fundamental property of Nucleon
- space like -> impact on time like
- what is G_E in time like domain?
- possibilities to measure in timelike domain new data from BaBar, not yet from Belle proposals DAPHNE, BESIII, VEPP-2000, PANDA
 PANDA opens door to new EM nucleon structure EM form factors below threshold Axial form factor in time like domain
 - space like GPDs -> time like GDA

EM form factor ($q^2 < 0$) recent data

"Polarisation transfer"-technique: $\mu_P G_E \neq G_M$

Unpolarized cross section

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4q^2} \sqrt{\frac{\tau}{\tau - 1}} D$$

saclay

$$\begin{split} D &= (1 + \cos^2 \theta) (|G_M|^2 + 2ReG_M \Delta G_M^*) + \frac{1}{\tau} \sin^2 \theta (|G_E|^2 + 2ReG_E \Delta G_E^*) + \\ & 2\sqrt{\tau(\tau-1)} \cos \theta \sin^2 \theta Re(\frac{1}{\tau}G_E - G_M)F_3^*. \end{split}$$

 2γ -contribution:

- Induces four new terms
- Odd function of θ:
- Does not contribute at θ =90°

$\gamma \gamma$ exchange from $e^+e^- \rightarrow p\overline{p}\gamma BABAR$ data

PLB659, 197

from Simone Pacetti

ECT* - Trento, February 25, 2008

ISR Physics at BABAR

Other EM structure Physics

Definitions q² < 0 $q^2 > 0$ space like time like $F_1(q^2)$ $4M_p^2$ 0 -7 2 3 5 -6 -5 -3 -2 -1 1 4 6 7 q² [GeV²c²] p e' e me<<mp p' p e^+ annihilation electron scattering

EM form factor below threshold Process:pp->π⁰ e⁺e⁻ analogue to ISR

EM form factor below threshold

 $q^2 [GeV^2]$

Process: pp->π⁰ e⁺e⁻ 10⁻² 10⁻³ $d^2\sigma/dE_{\pi}dq^2$ [mb/GeV³] 10-4 10⁻⁵ 10⁻⁶ 10-7 10⁻⁸ 10⁻⁹ 14^{12¹⁰864²0} 10⁻¹⁰ 10-1 7 6 5 4 3 2 $\frac{7}{0}$ E_{π} [GeV]

Axial form factor $Q_{wf} q_{Y\mu}Y^5 q$ Process:pn-> $\pi^- e^+e^-$

 $\ell^-(p_-$

 $\ell^+(p_+)$

 $\pi^{-}(q_{\pi})$

 $\gamma^*(q)$

 $p_2 - q_{\pi}$

(b)

Axial form factor

Radiative Return at Particle Factories

Using the method of the **Radiative Return** one can study the entire **energy region below ca. 4...5 GeV**!

ISR at Y(4S) Energies

Features:

- Rely on tagged photon for identifying ISR-events , $E_{\gamma} > 3 \text{ GeV} \leftrightarrow M_{hadr} < 5 \text{ GeV}$
- High fiducial efficiency : wide-angle ISR-γ forces hadronic system into detector fiducial region at large polar angles; untagged measurement (as done with at DAΦNE) not possible at PEP-II, since hadronic system cannot be measured with high geometrical acceptance in such a case
- Harder momentum spectrum

 fewer problems with soft particles;
 allows to go down to threshold
- Excellent momentum resolution by means of kinematic fit
- Typically systematic uncertainties ~5% up to ~20% depending on mass and channel

Achim Denig

Measurement of the Proton Form Factor below 4.5 GeV with BABAR

T _{p_bar} (GeV)	Q ² (GeV/c) ²	θ _{CM}	θ _{lab}	p _{lab} (GeV/c)	one π Misident. Probability ECAL×DIRC×dE/dx	π ⁺ π ⁻ Misident. Probability
1	54	20°	13°	2.2	$0.001 \times 0.5 \times 0.05 = 2.5 \ 10^{-5}$	0.1 10 -9
1.	J.T	160°	132°	0.57	$0.033 \times 0.003 \times 0.03 = 3.0 \ 10^{-6}$	
		90°	54°	1.43	$0.001 \times 0.3 \times 0.03 = 9.10^{-6}$	0.1 10 -9
		<mark>90°</mark>	54°	1.43	$0.001 \times 0.3 \times 0.03 = 9.10^{-6}$	
25	82	20°	10°	3.7	$0.001 \times 1. \times 0.05 = 5.10^{-5}$	0.3 10 ⁻⁹
2.0	0.2	160°	117°	0.7	$0.014 \times 0.014 \times 0.03 = 6.10^{-6}$	
		<mark>90°</mark>	<mark>41°</mark>	2.2	$0.001 \times 1. \times 0.03 = 3.10^{-5}$	0.9 10 ⁻⁹
		90°	<mark>41</mark> °	2.2	$0.001 \times 1. \times 0.03 = 3.10^{-5}$	
5	120	20°	7.4 °	6.1	$0.001 \times 1. \times 0.1 = 10^{-4}$	0.6 10 ⁻⁹
J •	14.)	160°	102°	0.8	$0.014 \times 0.014 \times 0.03 = 6.10^{-6}$	
		90°	32°	3.4	$0.001 \times 1. \times 0.05 = 5.10^{-5}$	2.5 10-9
		<mark>90°</mark>	32°	3.4	$0.001 \times 1. \times 0.05 = 5.10^{-5}$	
10	223	20°	5.4°	10.9	$0.001 \times 1. \times 0.3 = 3.10^{-4}$	5.4 10 ⁻⁹
10.		160°	<mark>85°</mark>	1.0	$0.005 \times 0.12 \times 0.03 = 1.8 \ 10^{-5}$	
		<mark>90°</mark>	24°	5.95	$0.001 \times 1. \times 0.1 = 1.10^{-4}$	10. 10 -9
		<mark>90°</mark>	24°	5.95	$0.001 \times 1. \times 0.1 = 1.10^{-4}$	