

Chiral symmetry, $\pi\pi$ scattering and a_{μ}

Gilberto Colangelo

b UNIVERSITÄT BERN

Frascati, April 7, 2008

Outline

Introduction: status of $a_{\mu}^{\rm hvp}$

Roy equations

Pion electromagnetic form factor: improved representation and fits

Summary and outlook

Status of a_{μ}

Figure from M. Davier (07)

HMNT = Hagiwara, Martin, Nomura, Teubner, TY = de Tróconiz, Ynduráin

Theory analysis of the two-pion contribution

- About 70% of the hadronic contribution comes from below 1 GeV
- The contributions to a^{hvp}_µ up to 1 GeV are dominated by the two-pion contribution

$\sigma(e^+e^- ightarrow ext{hadrons})_{|_{s<1\text{GeV}}} \sim |F_{\pi}(s)|^2$

- Analyticity and unitarity relate very strongly the pion form factor and the *P*-wave ππ phase shift
- The $\pi\pi$ interaction at low energy is known theoretically to high precision

Theory analysis of the two-pion contribution

- About 70% of the hadronic contribution comes from below 1 GeV
- The contributions to a^{hvp}_µ up to 1 GeV are dominated by the two-pion contribution

$\sigma(e^+e^- ightarrow ext{hadrons})_{|_{s<1\text{GeV}}} \sim |F_{\pi}(s)|^2$

- Analyticity and unitarity relate very strongly the pion form factor and the *P*-wave ππ phase shift
- The $\pi\pi$ interaction at low energy is known theoretically to high precision
 - \Rightarrow Use the knowledge on $\delta_{\pi\pi}$ to constrain $F_{\pi}(s)$

$\pi\pi$ scattering

Using analyticity, unitarity (\equiv Roy eqs.) and chiral symmetry

GC, Gasser and Leutwyler, NPB 01

$\pi\pi$ scattering

Using analyticity, unitarity (\equiv Roy eqs.) and chiral symmetry

Roy equation for the *P* wave

$$t_{1}^{1}(s) = k_{1}^{1}(s) + \int_{4M_{\pi}^{2}}^{E_{0}^{2}} ds' K_{11}^{11}(s,s') \operatorname{Im} t_{1}^{1}(s') + \int_{4M_{\pi}^{2}}^{E_{0}^{2}} ds' K_{10}^{10}(s,s') \operatorname{Im} t_{0}^{0}(s') + \int_{4M_{\pi}^{2}}^{E_{0}^{2}} ds' K_{10}^{12}(s,s') \operatorname{Im} t_{0}^{2}(s') + t_{1}^{1}(s) + d_{1}^{1}(s)$$

$$k_{1}^{1}(s) = \frac{s - 4M_{\pi}^{2}}{36M_{\pi}^{2}} \left(2a_{0}^{0} - 5a_{0}^{2}\right) \qquad E_{0} = 1.15 \text{ GeV}$$

$$f_{1}^{1}(s) = \sum_{l'=0}^{2} \sum_{\ell'=0}^{1} \int_{E_{0}^{2}}^{E_{1}^{2}} ds' K_{1\ell'}^{1l'}(s,s') \operatorname{Im} t_{\ell'}^{l'}(s') \qquad E_{1} = 1.7 \text{ GeV}$$

 $d_1^1(s) =$ all the rest

Roy equation for the *P* wave

$$t_{1}^{1}(s) = k_{1}^{1}(s) + \int_{4M_{\pi}^{2}}^{E_{0}^{2}} ds' K_{11}^{11}(s,s') \operatorname{Im} t_{1}^{1}(s') + \int_{4M_{\pi}^{2}}^{E_{0}^{2}} ds' K_{10}^{10}(s,s') \operatorname{Im} t_{0}^{0}(s') + \int_{4M_{\pi}^{2}}^{E_{0}^{2}} ds' K_{10}^{12}(s,s') \operatorname{Im} t_{0}^{2}(s') + t_{1}^{1}(s) + d_{1}^{1}(s)$$

$$t_\ell^\prime(\mathbf{s}) = rac{1}{2i\sigma(\mathbf{s})} \left\{ \eta_\ell^\prime(\mathbf{s}) \, \mathrm{e}^{2i\delta_\ell^\prime(\mathbf{s})} - \mathsf{1}
ight\}$$

 η_{ℓ}^{I} given \Leftrightarrow Roy eqs. \equiv coupled integral equations for $\delta_{\ell}^{I}(s)$ for $4M_{\pi}^{2} < s < E_{0}^{2}$

Roy equations: input uncertainties

Roy equations: input uncertainties

Roy equations: input uncertainties

• Analyticity $\Rightarrow \delta(s) \Leftrightarrow F_{\pi}(s)$ (Omnés)

$$m{F}_{\pi}(s) = \exp\left[rac{s}{\pi}\int_{4M_{\pi}^2}^{\infty} ds' \, rac{\delta(s')}{s'(s'-s)}
ight] \,, \quad m{F}_{\pi}(0) = 1$$

• Analyticity $\Rightarrow \delta(s) \Leftrightarrow F_{\pi}(s)$ (Omnés)

$$F_{\pi}(s) = \exp\left[rac{s}{\pi}\int_{4M_{\pi}^2}^{\infty} ds' \, rac{\delta(s')}{s'(s'-s)}
ight] \,, \quad F_{\pi}(0) = 1$$

Unitarity

(Watson's theorem)

$$\delta(s) = \delta_1^{\pi\pi}(s)$$
 for $s < s_{in}$

• Analyticity $\Rightarrow \delta(s) \Leftrightarrow F_{\pi}(s)$ (Omnés)

$$F_{\pi}(s) = \exp\left[rac{s}{\pi}\int_{4M_{\pi}^2}^{\infty} ds' \, rac{\delta(s')}{s'(s'-s)}
ight] \,, \quad F_{\pi}(0) = 1$$

Unitarity

(Watson's theorem)

$$\delta(\mathbf{s}) = \delta_1^{\pi\pi}(\mathbf{s})$$
 for $\mathbf{s} < \mathbf{s}_{\mathrm{in}}$

• Unitarity and experiments $\Rightarrow s_{in} = (M_{\pi} + M_{\omega})^2$ (Eidelman-Lukaszuk)

• Analyticity $\Rightarrow \delta(s) \Leftrightarrow F_{\pi}(s)$ (Omnés)

$$F_{\pi}(s) = \exp\left[rac{s}{\pi}\int_{4M_{\pi}^2}^{\infty} ds' \, rac{\delta(s')}{s'(s'-s)}
ight] \,, \quad F_{\pi}(0) = 1$$

Unitarity

(Watson's theorem)

$$\delta(\mathbf{s}) = \delta_1^{\pi\pi}(\mathbf{s})$$
 for $\mathbf{s} < \mathbf{s}_{\mathrm{in}}$

• Unitarity and experiments $\Rightarrow s_{in} = (M_{\pi} + M_{\omega})^2$ (Eidelman-Lukaszuk)

Representation of $F_{\pi}(s)$ which automatically satisfies unitarity, analyticity and chiral symmetry

[Heyn and Lang 81, de Trocóniz and Ynduráin 02]

[Caprini, GC, Leutwyler and Smith work in progr.]

Our form factor representation

Omnés representation (57)

$$F_V(s) = \exp\left[rac{s}{\pi}\int_{4M_\pi^2}^\infty ds' rac{\delta(s')}{s'(s'-s)}
ight] \equiv \Omega(s)$$

Our form factor representation

Omnés representation (57)

$$F_V(s) = \exp\left[rac{s}{\pi}\int_{4M_\pi^2}^\infty ds' rac{\delta(s')}{s'(s'-s)}
ight] \equiv \Omega(s)$$

Split elastic from inelastic contributions

$$\delta = \delta_{\pi\pi} + \delta_{\text{in}} \quad \Rightarrow \quad F_V(s) = \Omega_{\pi\pi}(s)\Omega_{\text{in}}(s)$$

Eidelman-Lukaszuk: unitarity bound on δ_{in}

$$\begin{split} \sin^2 \delta_{\mathrm{in}} &\leq \frac{1}{2} \left(1 - \sqrt{1 - r^2} \right) \quad r = \frac{\sigma_{e^+e^- \to \neq 2\pi}^{l=1}}{\sigma_{e^+e^- \to 2\pi}} \\ &\Rightarrow \quad \mathrm{Im}\Omega_{\mathrm{in}}(s) \simeq 0 \qquad s \leq (M_\pi + M_\omega)^2 \end{split}$$

Our form factor representation

Omnés representation (57)

$$F_V(s) = \exp\left[rac{s}{\pi}\int_{4M_\pi^2}^\infty ds' rac{\delta(s')}{s'(s'-s)}
ight] \equiv \Omega(s)$$

Split elastic from inelastic contributions

$$\delta = \delta_{\pi\pi} + \delta_{in} \quad \Rightarrow \quad F_V(s) = \Omega_{\pi\pi}(s)\Omega_{in}(s)$$

Eidelman-Lukaszuk: unitarity bound on δ_{in}

$$\begin{split} \sin^2 \delta_{\mathrm{in}} &\leq \frac{1}{2} \left(1 - \sqrt{1 - r^2} \right) \quad r = \frac{\sigma_{e^+e^- \to \neq 2\pi}^{l=1}}{\sigma_{e^+e^- \to 2\pi}} \\ &\Rightarrow \quad \mathrm{Im}\Omega_{\mathrm{in}}(s) \simeq 0 \qquad s \leq (M_\pi + M_\omega)^2 \end{split}$$

• $\rho - \omega$ -mixing must also be explicitly taken into account

$$F_V(s) = \Omega_{\pi\pi}(s)\Omega_{in}(s)G_{\omega}(s)$$

$$egin{array}{lll} \Omega_{\pi\pi}(\mathbf{s}) &\Rightarrow & \left\{ egin{array}{lll} \phi_0 &= \delta_{\pi\pi}((0.8 \ {
m GeV})^2) \ \phi_1 &= \delta_{\pi\pi}(68 M_\pi^2) \end{array}
ight. \ G_\omega(\mathbf{s}) &\Rightarrow & \left\{ egin{array}{lll} \epsilon & \omega &-
ho \ {
m mixing} \ M_\omega \end{array}
ight. \ \Omega_{
m in}(\mathbf{s}) &\Rightarrow & \left\{ egin{array}{lll} \epsilon & \omega &-
ho \ {
m mixing} \ M_\omega \end{array}
ight. \ G_{\mathcal{P}} & {
m Im} G_2(\mathbf{s}) = \mathbf{0} \quad \mathbf{s} \leq \mathbf{s}_{
m in} \end{array}
ight. \end{array}$$

$$G_{\omega}(s) = 1 + \epsilon \frac{s}{s_{\omega} - s} \quad \text{where} \quad s_{\omega} = (M_{\omega} - i\Gamma_{\omega}/2)^2$$
$$\Omega_{\text{in}}(s) = 1 + \sum_{k=1}^{n} c_k (z(s)^k - z(0)^k) \quad z = \frac{\sqrt{s_{\pi\omega} - s_1} - \sqrt{s_{\pi\omega} - s}}{\sqrt{s_{\pi\omega} - s_1} + \sqrt{s_{\pi\omega} - s}}$$

$$\begin{split} \Omega_{\pi\pi}(\mathbf{s}) &\Rightarrow \begin{cases} \phi_0 = \delta_{\pi\pi}((0.8 \text{ GeV})^2) \\ \phi_1 = \delta_{\pi\pi}(68M_{\pi}^2) \end{cases} \\ G_{\omega}(\mathbf{s}) &\Rightarrow \begin{cases} \epsilon & \omega - \rho \text{ mixing} \\ M_{\omega} \end{cases} \\ \Omega_{\text{in}}(\mathbf{s}) &\Rightarrow \begin{cases} c_1 \\ \vdots \\ c_P \end{cases} \quad \text{Im} G_2(\mathbf{s}) = 0 \quad \mathbf{s} \leq \mathbf{s}_{\text{in}} \end{cases} \end{split}$$

Output:

$$a_{
ho,2M_K} = 10^{10} \left(rac{lpha m_{\mu}}{3\pi}
ight)^2 \int_{4M_{\pi}^2}^{s_{
ho},4M_K^2} ds rac{\hat{K}(s)R(s)}{s^2} \qquad s_{
ho} = (0.81 {
m GeV})^2$$

Outcome of the fit

Outcome of the fit

P = number of parameters in Ω_{in}

Outcome of the fit

P = number of parameters in Ω_{in}

Data	χ^2/dof	ϕ_0	ϕ_1	$10^{10}a_{ ho}$	10 ¹⁰ <i>а</i> _{2<i>M</i>к}
CMD2(04)	76/82	110.0(7)	167.6(6)	422.2(2.8)	492.4(3.0)
CMD2(06)	82/76	109.0(5)	166.4(4)	421.5(2.3)	491.7(2.4)
CMD2(06-hi)	65/67	108.9(5)	166.2(4)	423.0(2.4)	493.2(2.5)
SND	70/84	108.9(5)	166.9(4)	421.1(2.0)	493.2(2.1)
KLOE	70/98	108.3(4)	168.4(3)	428.2(1.6)	494.9(1.4)

The extrapolation down to threshold does not imply an increase in the relative uncertainty, e.g. for CMD2(04):

 $a^{\rm hvp}_{\mu}_{(0.6 {\rm GeV} \le \sqrt{s} \le 2M_{\cal K})} = (385.2 \pm 2.3) \cdot 10^{-10} = 385.2 \cdot 10^{-10} (1 \pm 0.006)$

Data	χ^2/dof	ϕ_0	ϕ_1	$10^{10} a_{ ho}$	10 ¹⁰ a _{2Mĸ}
CMD2(04)	76/82	110.0(7)	167.6(6)	422.2(2.8)	492.4(3.0)
CMD2(06)	82/76	109.0(5)	166.4(4)	421.5(2.3)	491.7(2.4)
CMD2(06-hi)	65/67	108.9(5)	166.2(4)	423.0(2.4)	493.2(2.5)
SND	70/84	108.9(5)	166.9(4)	421.1(2.0)	493.2(2.1)
KLOE	70/98	108.3(4)	168.4(3)	428.2(1.6)	494.9(1.4)

The 10 data points close to threshold by CMD2(06) cannot be fitted very well – the parametrization is too stiff to adapt to them

Data	χ^2/dof	ϕ_0	ϕ_1	$10^{10} a_{ ho}$	10 ¹⁰ <i>а</i> _{2<i>M</i>к}
CMD2(04)	76/82	110.0(7)	167.6(6)	422.2(2.8)	492.4(3.0)
CMD2(06)	82/76	109.0(5)	166.4(4)	421.5(2.3)	491.7(2.4)
CMD2(06-hi)	65/67	108.9(5)	166.2(4)	423.0(2.4)	493.2(2.5)
SND	70/84	108.9(5)	166.9(4)	421.1(2.0)	493.2(2.1)
KLOE	70/98	108.3(4)	168.4(3)	428.2(1.6)	494.9(1.4)

CMD2 and SND agree well. There is some tension with KLOE as far as the shape is concerned:

$$(\phi_1 - \phi_0)_{\text{without KLOE}} = 57.7 \pm 0.7$$
 $(\phi_1 - \phi_0)_{\text{KLOE}} = 60.1 \pm 0.6$

Data	χ^2/dof	ϕ_0	ϕ_1	$10^{10}a_{ ho}$	10 ¹⁰ <i>а</i> _{2<i>M</i>к}
CMD2(04)	76/82	110.0(7)	167.6(6)	422.2(2.8)	492.4(3.0)
CMD2(06)	82/76	109.0(5)	166.4(4)	421.5(2.3)	491.7(2.4)
CMD2(06-hi)	65/67	108.9(5)	166.2(4)	423.0(2.4)	493.2(2.5)
SND	70/84	108.9(5)	166.9(4)	421.1(2.0)	493.2(2.1)
KLOE	70/98	108.3(4)	168.4(3)	428.2(1.6)	494.9(1.4)

The different determinations of $a_{2M_{k}}$ can be averaged well:

$$a_{2M_K} = 493.7 \pm 1.0$$

Stat. and syst. errors have been added in squares for all data sets. Numbers here are preliminary and mainly for illustration purposes. Final error here too small to be taken at face value – more conservative procedure should be adopted (e.g. adding syst. errors linearly).

Comparison CMD2(04)-KLOE

Comparison CMD2(04)-KLOE

Summary and outlook

- the extension of the Roy equation analysis of ππ scattering has been completed and is ready to be used for the analysis of pion em form factor
- fully exploiting analyticity, unitarity and χ-symmetry is essential in the evaluation of the integral a^{hvp}_μ by providing a controlled framework in which to analyze the data below
 1 GeV and make the extrapolation down to threshold
- I have presented preliminary numbers for a^{hvp}_µ below 1 GeV obtained by analyzing different data sets
- ► quite a coherent picture emerges from the different e⁺e⁻ data sets - a^{hvp}_µ can be determined to better than 1% but there are still some tensions in the data that one would like to understand
- the analysis is in progress and will be completed in the next few months work in progress, Caprini, GC, Leutwyler and Smith