

D⁰ Mixing: One Year Later

Mat Charles (The University of Iowa)

Outline

- The detectors & data samples
- Quick recap of mixing physics
- Experimental results
- Summary

BaBar & Belle

524.2/fb recorded as of 2008-03-19

783.8/fb recorded as of 2008-03-20

Operating energy: $\sqrt{s} \sim 10.6 \text{ GeV}$ (... plus data at Y(3S),Y(2S) -- not discussed here.)

 $\sigma(e^+e^- \rightarrow c\bar{c}) \sim 1.3$ nb so combined sample contains ~ 1700M $c\bar{c}$ events

Mat Charles

Neutratimestans dave in increase fixed quality number
- can have mixing between
$$|M^0\rangle$$
 and $|\overline{M}^0\rangle$
Mixing occurs for $\frac{1}{d}$ and $|\overline{M}^0\rangle$
Time evaluation into $\frac{1}{d}$ and $|\overline{M}^0\rangle$, B^0 ,

Mat Charles

PHIPSI08, Frascati, 2008-04-07

1

Cartoon of mixing

For convenience, define:

$$\Gamma = \frac{\Gamma_2 + \Gamma_1}{2} \qquad \qquad x = \frac{m_1 - m_2}{\Gamma} \qquad \qquad y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}$$

and
$$R_M = \frac{x^2 + y^2}{2}$$

Mixing in charmed mesons

Charm mixing small compared to other mesons in SM:

Contributes mainly to x

Intermediate b: CKM-suppressed Intermediate d,s: GIM-suppressed

$$x \propto \frac{(m_s^2 - m_d^2)^2}{m_c^2} \sim 10^{-5}$$

Tiny!

Mixing via hadronic intermediate states (long-range) $\overline{D}^{0} \underbrace{(k^{*}K^{*}}_{\pi^{*}\pi^{*}}\pi^{*}\pi^{*}\pi^{*}}_{\text{etc}} D^{0}$

Non-perturbative; hard to predict SM contribution. Most predictions give x,y ~ (0.001-0.01) and |x| < |y|Recent calculation: $|x| \le 0.01$, $|y| \le 0.01 - less$ tiny! PRD 69,114021 (Falk, Grossman, Ligeti, Nir & Petrov)

New physics?

- Theoretical uncertainty in SM mixing rate => can't really observe NP by looking at mixing.
 - (... though x≫y would be a hint...)
 - Future theory input might change things.
- In the meantime, can bound NP from above
 - e.g. Golowich, Hewett, Pakvasa & Petrov (PRD76:095009,2007)
- CPV has more potential to provide a "smoking gun" -- expected to be small (typically < 10^{-3}) in SM but can be larger with NP.

Experimental results

Broadly, four types of measurement:

- I) Lifetime difference between states of different CP
- 2) Time-dependence of wrong-sign hadronic decays
- 3) Wrong-sign semi-leptonic decays, e.g. $D^0 \rightarrow K^+ I^- \overline{\nu}_I$
- 4) Coherent D⁰D⁰ production at psi(3770) -- CLEO-c (not covered in this talk)

Lifetime ratios: Introduction

Define
$$y_{CP} = \frac{\tau(K^-\pi^+)}{\tau(K^+K^-)} - 1$$

 $T^-\pi^+$

$$y_{CP}$$
 related to y and CP parameters by:
 $y_{CP} = y \cos \phi - \frac{1}{2} A_M x \sin \phi$
 $A_M \neq 0$: CPV in mixing (asymmetry in R_M)

Falk et al, PRD65,054034

 $A_M \neq 0$: CPV in mixing (asymmetry in R_M between D^0 and D^0) $\cos\varphi \neq I$: CPV in interference between mixing and decay

CP observables (A_{Γ} or Δ Y) defined as:

$$A_{\Gamma} = -\frac{\tau \left(D^{0} \to K^{+} K^{-} \right) - \tau \left(\overline{D}^{0} \to K^{+} K^{-} \right)}{\tau \left(D^{0} \to K^{+} K^{-} \right) + \tau \left(\overline{D}^{0} \to K^{+} K^{-} \right)} \qquad \Delta Y = -\frac{\tau \left(D^{0} / \overline{D}^{0} \to K^{-} \pi^{+} \right)}{\tau \left(D^{0} / \overline{D}^{0} \to K^{+} K^{-} \right)} A_{\Gamma}$$

Non-zero value of y_{CP} implies mixing. If no CP violation, $y_{CP} = y$.

Mat Charles

Why x' and y' instead of x and y? $x' = x \cos \delta + y \sin \delta$ $y' = y \cos \delta - x \sin \delta$ where δ is the phase difference between DCS and CF decays and depends on the final state. Note: $(x'^2 + y'^2)/2 = (x^2 + y^2)/2 \equiv R_M$

Mat Charles

Clear evidence for mixing! But no evidence for CP violation found.

Semi-leptonic decays

HFAG Combined results

No-mixing point excluded at 6.7σ

World average: $x = (0.97^{+0.27}_{-0.29})\%$ $y = (0.78^{+0.18}_{-0.19})\%$

No-CPV point still allowed at $I\sigma$

World average: $|q/p| = 0.86^{+0.18}_{-0.15}$ $\arg(q/p) = \left(-0.17^{+0.14}_{-0.16}\right)$ rad

Mat Charles

Summary

• D^0 mixing now established (world avg: 6.7 σ level)

- Still large uncertainties on parameters
- More work to do (pinning down x, y, y_{CP})
- Still statistically limited
- Observed mixing rate consistent with SM prediction...
 - ... within large theory uncertainty...
 - ... and at upper end of expected range.
- No sign of CP violation (direct or indirect) in charm yet
 - Limits still well above SM expectations -- room for NP.

Backups

Mat Charles

CP violation

Direct CPV: Manifests as an asymmetry in time-integrated decay rate between particle & antiparticle Indirect CPV: Manifests as an asymmetry in time-dependent decay rates (& thus time-integrated too)

Mat Charles

CPV:WS hadronic D⁰ decays

Wrong-sign hadronic D⁰ decays -- time dependence goes like: $\frac{T_{\rm WS}^{\pm}(t)}{e^{-\Gamma t}} = \sqrt{\frac{1 \pm A_{\rm D}}{1 \mp A_{\rm D}}} R_{\rm D} + \sqrt{R_{\rm D}} \sqrt[4]{\frac{(1 \pm A_{\rm D})(1 \pm A_{\rm M})}{(1 \mp A_{\rm D})(1 \mp A_{\rm M})}} (y' \cos \varphi \mp x' \sin \varphi) \Gamma t + \sqrt{\frac{1 \pm A_{\rm M}}{1 \mp A_{\rm M}}} \frac{x'^2 + y'^2}{4} (\Gamma t)^2$

Simplify by writing separately for D⁰ (+) and \overline{D}^0 (-)

$$T_{\rm WS}^{\pm}(t) = e^{-\Gamma t} \left(R_{\rm D}^{\pm} + \sqrt{R_{\rm D}^{\pm}} y'^{\pm} \Gamma t + \frac{x'^{\pm 2} + y'^{\pm 2}}{4} (\Gamma t)^2 \right)$$

i.e. $A_{\rm D} = \frac{R_{\rm D}^{+} - R_{\rm D}^{-}}{R_{\rm D}^{+} + R_{\rm D}^{-}}, \qquad A_{\rm M} = \frac{R_{\rm M}^{+} - R_{\rm M}^{-}}{R_{\rm M}^{+} + R_{\rm M}^{-}}$

Then:

- $\bullet\,A$ difference between $R_D{}^+$ and $R_D{}^-$ indicates CPV in decay
- A difference between (x'⁺ and x'⁻) or (y'⁺ and y'⁻) indicates indirect CPV

Advantage of expressing it this way: fit parameters $(x'^{\pm}, y'^{\pm}, R_D^{\pm})$ are well-defined even when mixing is small or zero.

CPV: Hadronic D⁰ decays

Searches in time-dependent analyses

BaBar D ⁰ \rightarrow K ⁺ π^-		
$R_{\rm D}$	3.03 ± 0.16	\pm 0.10
A_{D}	-21 ± 52	\pm 15
x'^{2+}	-0.24 ± 0.43	± 0.30
y'^+	9.8 ± 6.4	\pm 4.5
x'^{2-}	-0.20 ± 0.41	± 0.29
y'^-	9.6 ± 6.1	\pm 4.3

	Belle $D^0 \rightarrow K^+ \pi^-$	
	Value	95% CL
A_D	23 ± 47	(-76, 107)
A_M	670 ± 1200	(-995, 1000)
x'^2	-	< 0.72
y'	-	(-28, 21)
R_M	-	< 0.40

Belle D⁰ → K_S π⁺ π⁻ $|q/p| = 0.86 \stackrel{+0.30}{_{-0.29}} \stackrel{+0.06}{_{-0.03}} \pm 0.08$ $\arg(q/p) = \left(-14 \stackrel{+16}{_{-18}} \stackrel{+5}{_{-3}} \stackrel{+2}{_{-4}}\right)^{\circ}$

Sample y_{CP} ΔY K^-K^+ $(1.60 \pm 0.46 \pm 0.17)\%$ $(-0.40 \pm 0.44 \pm 0.12)$ $\pi^-\pi^+$ $(0.46 \pm 0.65 \pm 0.25)\%$ $(0.05 \pm 0.64 \pm 0.32)$		BaBar D ⁰ \rightarrow K ⁺ K ⁻ and $\pi^+\pi^-$	
$ \begin{array}{rl} K^- K^+ & (1.60 \pm 0.46 \pm 0.17)\% & (-0.40 \pm 0.44 \pm 0.12) \\ \pi^- \pi^+ & (0.46 \pm 0.65 \pm 0.25)\% & (-0.05 \pm 0.64 \pm 0.32) \end{array} $		Sample	
$\pi^{-}\pi^{+}$ (0.46 ± 0.65 ± 0.25)% (0.05 ± 0.64 ± 0.32)%	K^-K^+ (
)%	$\pi^{-}\pi^{+}$ (
Combined $(1.24 \pm 0.39 \pm 0.13)\% (-0.26 \pm 0.36 \pm 0.08)$	5)%	Combined	

Belle D⁰ → K⁺K⁻ and $\pi^{+}\pi^{-}$ $A_{\Gamma} = (0.01 \pm 0.30 (\text{stat.}) \pm 0.15 (\text{syst.}))\%.$

Small mixing rate \Rightarrow Limited sensitivity to indirect CPV

Mat Charles

Mat Charles

• Signal sample 82.5K evt for $\pi^+\pi^-\pi^0$ and 11.3K for $K^+K^-\pi^0$: 98% purity.

•CP asymmetry evaluated with 4 different methods: 3 methods are model independent (MI).

- Difference between D^0 and D^0 Dalitz plot in 2 dimensions (MI)
- Difference in the angular moments of D⁰ and \overline{D}^0 (*MI*)
- \bullet Difference in Dalitz plot fit results for amplitude-phases for D^0 and D^0
- Difference in phase space integrated asymmetry (MI)

Last method is insensitive to Dalitz plot shapes, so complements the other methods.

Nicola Neri

La Thuile 08

32

No evidence of CP violation at few % level in either decay modes with any of the 4 methods used to evaluate the CP asymmetry.

Mat Charles