
JDOOCS – A JAVA LIBRARY FOR DOOCS

K. Rehlich , DESY, Hamburg, Germany
V. Kocharyan, YerPhI, Yerevan, Armenia.

Abstract
To give a possibility to access data from different

computer platforms we have developed a client part
of DOOCS library in Java language (JDOOCS). It is
fully identical to the DOOCS Client API and allows
to read and write data from/to servers supporting
DOOCS and TINE protocols. For testing of the
JDOOCS library we have written a generic
application in Java that allows to access all data in
the control system.

1. INTRODUCTION
The DOOCS [1] is the control system of TTF

(TESLA Test Facility), where every type of
hardware device is presented as an object. It provides
communication via a standard set of data and address
objects transferred by Open Network Computing /
Remote Procedure Calls (ONC/RPC) from Sun. It’s
available on Solaris, SunOS, LINUX and Windows.

The main goal to create Java libraries is to have a
possibility to include more computer platforms in the
control system and develop the Web technologies.
The server-client data exchange of the DOOCS
supports more then thirty data types, which were
generated by the jgen.jar application, and is inserted
into the jdoocs.jar library. ONC/RPC of the
JDOOCS is based on the ACPLTea (Aachen
University of Technology, Germany) library
packages. The library and applications were written
by means of SUN Forte JDK and the documentation
was also generated. The applications are tested on
Solaris, LINUX and Windows platforms.

2. THE LIBRARY STUCTURE
The Java JDOOCS library, just as the C++

DOOCS client library, contains three main classes
EqCall, EqAdr, EqData and the extra frames, which
collect the RPC request in a local database (
EqServices and so on).

The EqCall class is the client interface to the RPC
communication. This class library does the actual
transfer of the data from/to the devices and supports
DOOCS as well as TINE protocols. The class has
three communication methods:

 EqData get (EqAdr adr, EqData data);

EqData set (EqAdr adr, EqData data);

EqData names (EqAdr adr).

All calls return an EqData class object. The API
has access to a name server (ENS), which resolves
the necessary information about the servers. These
data are stored inside the server table so that just one
call to the name server is needed. After this
information is stored in the library’s local database.
The hosts where the name servers run may be passed
via ENSHOST environment variable.

The EqAdr class is the address definition. This
class library is the address part of the communication
and is composed of four fields of the address string.
The class methods allow to initialize and manipulate
the address string.

The EqData class is the interface to the data
objects transferred from the java application to the
device server and the returned data too. The class
methods allow to send data in its native form and
converted on the receiver side, since the EqData
class contains data type and request time
information. For instance, a get call specifies an
address and a data object to be sent to the server and
gets a result object from the server.

import ttf.doocs.clnt.*;

……………………………………….
// create the required objects
EqAdr ea = new EqAdr();
EqData ed = new EqData();
EqData result = null;
EqCall eq = new EqCall();
// fill the address class
ea.adr("TTF.RF/ADC/HOR.ADC1/CH00.TD");

// init sending object

String data = “-1 0 4 100”;

ed.set_type(eq_rpc.DATA_IIII);

ed.set_from_string(data);

//do call

result = eq.get (ea, ed);
System.out.printfln(result.get_string());

As a result we’ll get from the server an error
message or data presented in a string form.

3. RPC_UTIL - JAVA APLLICATION

As a test application, we have written a simple,
but powerful java Swing tool to read or change all
values in the DOOCS control system. The tool was
archived in rpc_util.jar java archive. To run the
application, type: java –jar rpc_util.jar. Using this
tool is simple: by clicking on the desired "Facility",
then "Device", "Location" and finally "Property"
fields , you choose the channel and can see the
requested value in the "Result" line. Then click on
the "Read" button to update the chosen value. It also
sets the received data type in the JComboBox. To
send data to the server, choose the data type from
JcomboBox, put data into the textfield first, and then
click the "Send" button.

Figure 1: The Java tool to communicate with all
DOOCS data

We have the ttfplot package for the visualization
of the data array. The ttfplot package receives the
data via RPC calls :

Figure2: The spectrum plot of an amplitude channel

or via request to a special servlet:

Figure3: The spectrum plot of a phase channel

We still didn’t solve the authorization problem for
set requests from the non-UNIX environment, but
it’s supposed to be solved via a special call to the
name server.

The response time of the RPC calls made by this
tool was also analyzed - it has a similar speed as the
C client API calls.

4. JDOOCS IN WEB

As a Web implementation jdoocs.jar has been
included in Tomcat libraries path on the TTF
Logbooks web server. It allows to write servlets,
which are performing RPC calls and transferring the
requested data through the Web. The RPCTest applet
is shown in the picture below, it displays data
received from the servlet. This applet gives a
possibility to view and control all the servers running
in the DOOCS system remotely.

Figure 4: The RPCTest applet in the browser window

5. CONCLUSION

This library and the applications based on it allow
to perform a full control of TTF status and in the
future also TESLA control. The developing Java and
web technologies will provide us with useful tools to
display and control accelerator equipment on any
computer platform.

We would like to express special thanks to P.
Duval for supplying the tine.jar library which
allowed to support the TINE protocol in JDOOCS.

6. REFERENCES

[1] K. Rehlich et.al., “DOOCS: an Object Oriented
Control System as the Integrating Part of the
TTF Linac”, Proceedings of ICALEPS97,
Beijing China)

