
Web-based Beam-status Display for the KEK Injector Linac

N. Kamikubota, S. Kusano* and K. Furukawa
High Energy Accelerator Research Organization (KEK)

Mitsubishi Electric System and Service Co. Ltd.*

Abstract

A beam-status display for the KEK injector linac has
been developed as a Java applet. Actually this applet is
a CORBA client, which communicates with the CORBA
server of the KEK linac control system to update informa-
tion every ten seconds. As a result, anyone can monitor the
linac beam-status in real time by using a web browser of a
remote PC. Recent updates of this system are reviewed and
future prospects are given.

1 INTRODUCTION

The KEK linac has provided electron/positron beams to
the rings: a) 3.5-GeV positions to KEKB LER (KEK B-
factory Low-energy ring), b) 8-GeV electrons to KEKB
HER (High-energy ring), c) 2.5-GeV electrons to the PF
ring, and d) 2.5-GeV electrons to the PF-AR ring. How-
ever, simultaneous injections to multiple rings are not pos-
sible. When the linac is in an injection process for one
ring, other rings must wait for the next turns. Thus, up-to-
date information about the beam-injection status is highly
important for the ring operators and corresponding physics
users.

One of the modern solutions to provide such status in-
formation is to use the web. We have developed a Java
applet, which runs on a web browser (Internet Explorer
or Netscape Communicator) to provide the beam-status
of the KEK linac. Once the applet starts to run, it acts
as a CORBA client. The applet communicates with the
CORBA server of the linac control system every pre-
defined interval, and then updates the beam-status infor-
mation.

Since 1998, we have studied web-based real time display
systems, using both Java and CORBA [5, 6]. This early
work involved feasibility studies, and we did not use them
for real accelerator operation. However, recent improve-
ment of Java development kit (JDK/SDK) has enabled us
to use this scheme as a realistic solution to monitor the ac-
celerator status.

2 WEB-BASED BEAM-STATUS DISPLAY

2.1 Overview of the KEK Linac Control

The present control system of the KEK linac has been
used since 1993 [1, 2, 3]. The control system comprises 5
UNIX workstations (Compaq True64 Unix), 27 VME com-
puters (OS-9 operating system), 140 PLC (Programmable

logic controller), and 11 CAMAC crates with direct net-
work ports. A home-made RPC (remote procedure call),
based on the TCP and/or UDP protocols, is used for com-
munication between them. A simplified view of the control
system is shown in Fig. 1.

:

 :

t

)
)

Figure 1: Simplified view of the KEK linac control system.

The number of signals in the control system is 6000 x
16bit. The recent operation time exceeds 7000 hours per
year. During operation, the control servers handles 350
transactions per second in total (summer of 2001 [4]).

2.2 Web-based Real-time Display

In general, any control system has dedicated status-
display tools. The MEDM1 for the EPICS systems2 is a
typical example. It is often the case that such tools are
available only in limited places (i.e. control rooms) and at
limited computers. However, many potential users would
want to know the overall status and histories of accelerator
devices from outside of the control rooms.

Web service with CGI (Common Gateway Interface) is
a popular technique to meet this request. Automatic up-
date is possible by using the meta keyword ”refresh”. This
method allows one to ”broadcast” accelerator information
to anywhere where a web browser is available. The ”KEKB

1Motif Editor and Display Manager [7].
2Experimental Physics and Industrial Control System [8].



one-day Operation Summary” [9] is a typical example of
this CGI technique. This example re-draws the graph every
one minute. However, as the number of requests increases,
CGI-based web pages produce heavy CPU loads of server
machines as well as high network traffic between remote
browse machines and the servers.

In 1998, a test program was developed as a Java applet
(a CORBA client), which communicates with the CORBA
server at a Unix workstation of the KEK linac control sys-
tem. As a result, the status of the linac was shown at a web
browser of a remote PC [5, 6]. This study showed that a)
a 50 ms round-trip is possible between an applet and the
CORBA server, and b) the CPU load of the server machine
is much smaller than that of CGI-based cases. The prob-
lems were a) each time an applet takes a few minutes to
start, mostly downloading and initializing CORBA class li-
braries, and b) the web browsers at that time3 have early
versions of Java AWT (JDK1.0.x), and accordingly have a
poor ability to make graphic components.

2.3 Java and CORBA Environment

During the studies in 1998-2000, we used JDK 1.1.7 pro-
vided by Sun Microsystems for Java applet development.
For the server side, we used VisiBroker 3.0 for C++ (In-
prise Co.) at our Unix workstations.

During the summer of 2001, we decided to change
our development environments. The JDK was upgraded
to SDK after version 1.2 (so-called Java2). We chose
SDK1.3 because it was already widely used. In addition,
we changed the ORB (Object Request Broker - core pro-
cesses of CORBA) to ORBacus 4.0.5 for C++ (OOC/Iona
Co.). The main reason is that Inprise disconnected the sup-
port of VisiBroker for our platform (True64 Unix). An-
other important reason is that we prefer free software. 4

The changes are summarized in Table 1.

Table 1: Changes of the Java/CORBA environment
after 2001 1998-2000

Java SDK1.3.x (Java2) JDK1.1.7
(GUI) Swing AWT (JDK1.0.x)
(CORBA) included in SDK download necessary
CORBA ORBacus 4.0.5 VisiBroker v3.0
for C++ OOC/Iona Co. Inprise Co.

Free for academic True64 support stop
Aim realistic feasibility study

demonstration

The change to SDK1.3 (Java2) is significantly important,
because the SDK includes class libraries of basic CORBA
communication. Thus, the startup of an applet becomes
much faster than before. With the present environment, the
amount of download files is 4 MB. 5

3We used Netscape 3.x and 4.0.x .
4ORBacus is free for academic purposes.
5The ORBacus classes are of 3 MB, and the applet itself is 1 MB.

2.4 KEK-Linac Beam Status Display

We have developed a Java applet to show the beam-status
of the KEK linac with the new environment. A CORBA
server was also developed using the existing C-language li-
braries and beam-status databases of the KEK linac control
system. The overall relationships are shown in Fig. 2.

l

Figure 2: Relationship overview.

An example screen-shot of the beam-status display is
shown in Fig. 3. The screen includes information about
a) the present beam-status (beam-injection mode, beam
switch [On/Off], and beam current), b) 2-hour history
of the beam current, and c) 2-hour history of the beam-
injection modes. The screen updates information at ev-
ery 10-second interval by communicating with the CORBA
server. At the upper-left location, there is a menu used
to select the time-window (2-hour or 24-hour). When the
time-window is changed to 24-hour, the applet calls the
CORBA server to get recent 24-hour histories.

The present beam-status display is available at any plat-
form where Java 1.3 (or later) is installed. We assume that
although the major users use a browser at a Windows PC,
other platforms (Linux, BSD, Mac OS-X, Solaris, HP-UX
11.0, and so on) should also be available. At the KEKB
control room, a beam-status display has always running at
a Windows PC since April, 2002. We have found that the
display is sufficiently stable. 6 In addition, the service is
already open for anybody at KEK.

6The only problem is that the browser always clashes when somebody
clicks the back button.



Figure 3: Screen-shot of beam-status display.

3 DISCUSSION

3.1 Java plug-in

When a Windows user connects to our beam-status web
page for the first time, the user is requested to install ”Java
plug-in 1.3” (Fig. 4). This is because the Java 1.3 environ-
ment is not included in native Windows. Although the in-
stallation is a simple procedure, it takes roughly 10 minutes
to download necessary files from Sun Microsystems. In
feasibility studies conducted during 1998-2000, we had to
download the CORBA classes each time an applet started
to run. However, with the new environment, the download
of the basic CORBA classes is done only once.

For other platforms, Java 1.3 installation requires manual
actions. For example, for Linux, one has to find appropriate
rpm patches, and has to install them manually.

Figure 4: Wizard to assist plug-in download.

3.2 Security

CORBA communication requires a TCP/IP port, which
is defined in html text. When a firewall exists between a
remote PC and the server machine, we must make a hole
that corresponds to the port number of the communication.
However, a remote access can execute only pre-defined

CORBA methods at the server-side. Unless we have no
destructive methods, we have less risk of hacker’s attacks.

3.3 Future Directions

The present work can be applied to various fields which
aim for web-based status display in real time. If the exist-
ing CGI-based web pages with ”refresh” were replaced by
the present Java/CORBA pages, the total CPU load and net-
work traffic would decrease considerably. For accelerator
institutes, the present technique can be used as a CATV-like
system. By preparing the servers of the accelerator status,
any PC in the institute can be a browse terminal.

One of the problems in this scope is that preparing ap-
plets and CORBA servers is not easy. We are now consid-
ering a template system for the quick development of more
applets and servers. The template applet changes its look
and feel depending on the configuration file. The template
CORBA server can provide the status of different accelera-
tor devices by replacing pre-defined user functions. Studies
are now in progress at the KEK linac.

It is interesting that the present work uses the resources
(libraries and computers) of an existing control system.
The introduction of CORBA enables us to use modern in-
formation technology (Java) with a legacy system.

4 ACKNOWLEDGMENT

We thank Drs. Gennadiy Obukhov and Matthias
Clausen, DESY. Discussions with them at the beginning of
this work helped us very much. The authors acknowledge
Prof. Atsushi Enomoto for kindly supervising our work.
We also thank the KEK linac operators for cooperative and
successive work to improve our beam-status display.

5 REFERENCES

[1] N.Kamikubota, K.Furukawa, K.Nakahara and I.Abe, Nucl.
Instr. Meth. A352(1994)131

[2] N.Kamikubota, K.Furukawa, K.Nakahara, I.Abe and
A.Shirakawa, Proc. of the ICALEPCS’95, Chicago, October
1995, FERMILAB Conf-96/069 p.1052

[3] N.Kamikubota, K.Furukawa, S.Kusano and T.Obata, Proc.
of the ICALEPCS 2001, San Jose, CA, Nov.2001, KEK-
Preprint 2001-155, in press

[4] N.Kamikubota, K.Furukawa, T.Suwada and T.Urano, Proc.
APAC’01, Beijing, Sep.2001; KEK-Preprint 2001-124

[5] S.Kusano, N.Kamikubota and K.Furukawa, Proc. of the PCa-
PAC’99, Tsukuba, Jan.1999, KEK-Proceedings 98-14

[6] S.Kusano, N.Kamikubota and K.Furukawa, Proc. of the
ICALEPCS’99, Trieste, October 1999, p.535-537

[7] http://www.aps.anl.gov/epics/extensions/medm/index.php

[8] http://www.aps.anl.gov/epics/index.php

[9] http://www-linac.kek.jp/kekb/snapshop/


