
BUILDING EFFECTIVE GUI PANELS

G. Pajor*, J. Dovc, M. Kadunc, J. Kamenik, I. Kriznar, N. Oman, M. Plesko, G. Tkacik, I.
Verstovsek, J. Stefan Institute and Cosylab Ltd.

Abstract
In this article we present our basic GUI components

and how we build GUI panels using visual and
conventional programming. The new additions to the GUI
components are discussed in light of their flexible design.

Building an application as a front-end for control
system is a responsible task that merges end-users'
expectations of easy-to-use tool and developers' skill to
find the right solutions. The most efficient way of writing
applications that have certain similarities is obviously to
create re-usable components. These components should
be generic enough to fit into wide array of possible
application specifications. On the other hand it should be
possible to meet the specifications completely with very
little additional coding.

Re-usable components in ANKA accelerator project
case were designed at the time of the project and were a
success by itself. About two dozens applications were
built and virtually no application-based adjustments have
been made to the components due to their generic nature.

The slightly different aspect of our past work was
presented to us as we began working on another project,
beamline control application for Japanese commercial
customer. We built the graphical user interface for the
application and upon received screenshot they developed
a quite clear idea of what the application should look and
behave like. Their specifications went beyond the
implemented functionality of components at that time.
Due to good engineering of the components we added the
requested functionality without problems.

Decision should be made carefully which of the new
features can be implemented generically enough to put
them into the re-usable components instead of
implementing it in application itself.

1 RE-USABLE GUI COMPONENTS
Reuse of GUI components is vital for practically any

kind of GUI building. They help achieve the consistency
of GUI look and feel across the whole project and
considerably shorten development time. By providing a
set of GUI components, the code maintenance is
centralized and, with little forethought and skill,
completely application independent.

Some of these components (buttons, text areas, etc.) are
typically already available by the programming language
vendor. If they are written in an extensible way (such as
for example Swing Java Beans components), they provide
an excellent foundation for development of new
components.

Figure 1: Simple Power Supply Panel

1.1 Java is Hot
Java is great in respect of previous paragraph. We built

our CosyBeans [4] components (integrated in panels on
Figures 1, 2, 3) on the primitive Java components.
CosyBeans are re-usable, customizable and very
convenient for control system applications. Among the
most used (but far from being the only ones) are Gauger
(Figure 1, second from top), Slider (Figure 1, below
Gauger) and Ledder (Figure 1, below Slider).

Java also provides a mo dification of MVC (model-
view-controller) pattern [7]. This pattern provides
separation of visual representation (view), managing of
data the component uses (model) and the behavior on user
interaction (controller). This results in complete de-
coupling the visual and non-visual parts of component.
Consequently more than component can use the same
model and one component can use more than one model.

Java also features layout managers that manage the
correct resizing and positioning of components when
resizing the panel and when adding components in
runtime. The position of components is therefore not
absolute (as is in Visual Basic).

1.1 Need for New GUI Component
There are reasons for starting the development of a new

GUI component. Firstly, the idea may arise from the
immediate need, since the component has to be used in an
application currently being developed. Secondly, a new
component may be created because the developers feel
that there is a part of functionality in GUI libraries that is
missing, although there is no immediate need for the
component. We would like to stress this second case,
because a lot of our components started out as either
prototypes, toy-models or simply exercises for
programmers. However, when the first version was
developed, it typically soon found its way into the
applications.

In the first case, where components are developed for
immediate use, care has to be taken in two respects. First
and foremost, we must meet the demands of the customer.
Before actually developing something new, we investigate
if existing components can be extended and used. If not, a
new work is started, which leads to the second

*gasper.pajor@cosylab.com

requirement: to produce reusable components. In other
words, a new GUI component must, apart from satisfying
the customer at hand, be appropriate for a range of
envisioned uses in the future. It is at this point that the
component design and engineering really gets tested...

1.2 Meeting Customer Demands, GUI-wise
The customer is always more or less active participant

of the GUI development for ordered applications. If the
customer is satisfied with the range and functionality of
the existing GUI components, their role in GUI
development is minimal, as most work is already done
and the components only need to be placed, tuned and
connected to whatever runs underneath the GUI.

On the other hand, customer can develop his own ideas
for GUI. This normally leads to upgrading and extending
the functionality of existing components as well as
developing completely new components.

The upgrading of existing re-usable components is
always a test of components’ engineering design,
meaning that the components with added functionality
should be similar enough to their previous versions
without compromising their functionality in older
applications.

Process of enhancing of components on customer
demand has to be led firmly on both sides; inside the
development team to assure good engineering of the
upgrades and towards the customer to prevent excessive
work as a result of too loose specification.

Figure 2: Demo feedback with relevant comments

Demo applications proved to be very useful in process
of developing new or extending existing components as
the customer can easily determine his preferred way of
GUI behavior and functionality (Figure 2). However the
excessive use of demos can lead to development deadlock
where developers too often wait for customer’s feedback.
Therefore the right timing of releasing demos is required.

As demos cannot be run with real control system
underneath, we developed simu lator [6]. Abeans [4] layer
(our lowest client-side layer) is completely unaware of
simulator as simulator behaves just like the real control
system.

2 PANEL COMPOSING
In general, GUI can be composed either by visual

building, conventional programming or combination of
both techniques.

2.1 Visual Building
Visual editor can provide great assistance when

composing a GUI panel, as the placing and most of
setting and tuning of components is done with a mouse
click. Speed of panel development, automation of some
processes and ease of use are the chief attributes of GUI
visual building.

Visual editors function as WYSIWYG editors and as
such they tend to have some deficiencies. Among the
most bothering are:

?? When using fast-developing programming
languages (such as JavaTM, where new versions are
available practically every quarter) the visual
builders as quite complex tools cannot always
keep up. Being stuck with an old version of any
program, when a new version provides just the
right solutions, can of course be very frustrating.

?? Code maintenance of visually built panels is often
limited to specific visual builder in order to
preserve visual builder data (as some extra data for
WYSIWYG editing is stored together with the
source code).

?? All actions can be defined with mouse-drag but
excessive use of this can lead to connection chaos
(Figure 3), which makes the code maintenance
considerably harder.

?? Components need to be written by certain
specifications to ensure visual builder recognizes
them correctly.

?? Visual builders usually need a lot of computer
resources (RAM and CPU).

Figure 3: Connection chaos in visual composition

2.2 Conventional Programming
When writing source code in a text editor, none of the

visual builder weaknesses affects the developer.
However, handwriting GUI takes a lot of time, as the
code that would be generated and maintained by the
visual composition has to be set-up by hand.

Handwriting the GUI also demands more skilled and
experienced developers. As no code is generated by visual
builder the developer has full control over the code and
the problems can be eliminated more thoroughly if not
faster.

Design of the GUI is often better when done by hand as
all positioning has to be planned in advance to prevent
excessive work when repositioning the components on the
panel.

2.3 Best of Both Worlds
Obviously the best way to compose a GUI panel is to

use a healthy deal of both methods. Speed and visual
representation of visual builders is effective way to
position the components when the details and connections
to underlying code should be done manually to avoid
visual builder dependency and most of other visual
builder related problems. Code maintenance can also be
much easier when code is not generated by visual builder.

For fast development of relatively simple application
panels the visual editor alone is sometimes sufficient.

3 REAL WORLD EXAMPLE OF A GUI
PANEL DEVELOPMENT

At Cosylab Ltd. we prepared the presentation of our
work, both GUI and lower layers of control system, for
potential customers in the Japanese market. Attending
representatives of one of the Japanese companies showed
immediate interest and their first order was a couple of
applications along with GUI and the interface layer
(Abeans) for communication with control system.

The applications we built went trough the normal
process of the following stages: meeting specifications,
demo, meeting additional specifications and feature
requests, testing, bugifx, writing documentation and final
release, but it was the way we handled the process and the
tools we used that made the difference.

3.1 Specifications and Feature Requests
All specifications and feature requests were sent in

form of screenshots application with feature request text
connected to the respective components (Figure 1). This
was one of the best ways to specify all the GUI
requirements clearly and without ambiguity.

3.2 Coding
Applications were built on Abeans platform. Re-usable

components were placed and tuned using the visual editor
of IBM Visual Age while the non-visual part was done
completely by-hand.

3.3 Testing, Simulator and Bugfix
The real thorough tests were done using our simulator.

The testing was completed considerably faster and was
very efficient. The behavior of application was exactly the
same as in real control system and we were able to tune
all the responses of the simulator to test different
scenarios.

3.4 Documentation and Release
Documentation was written using our XML-XSLT

schema, which provides all the necessary functions for
documentation writing. Strict XML rules prevent any
unwanted declination of documents’ formatting and are
format-wise quality assurance by themselves.

Release was announced when everything was tested
and documented. The release package was published on
project’s web page on our server.

Note that all communication (from our offer to final
release) was done by e-mail on two mailing lists, one
internal and one for discussion with customer. No phone
calls or meetings were necessary.

4 CONCLUSION
Whereas not much skill is required to make a functional

visual application, much skill indeed is required to create
a maintainable visual application. If the code is not
maintainable (or maintainable enough), the duplication of
code presents a considerable if not critical overhead. To
assure maintainable code and fully functional products,
the following requirements should be met:

?? Application should consist of smaller units where
re-usable components are basic elements.

?? Even if re-usable components have shared
functionality, it should be extracted to avoid code
duplication.

?? Writing documentation for components and
applications is essential.

?? Quality should be assured by thorough testing.
Powerful testing tools are of great assistance at this
task.

5 ACKNOWLEDGEMENTS
We would like to thank colleagues at KGB team (J.

Stefan Institute) [1] and Cosylab Ltd. [2] for help at
developing my programming skills, Mr. Koji Natakani,
Mr. Takeshi Nakamura and Mr. Yoshitaka Yamamoto of
Hitachi Zosen Corporation, Japan for providing
exemplary feedback on GUI part of our collaboration.

Additional word of acknowledgement and recognition
goes to developers at eclipse.org [8] for providing
exceptional free tool for Java development.

6 REFERENCES
[1] http://kgb.ijs.si/
[2] http://www.cosylab.com/
[3] M. Kadunc et al. “Control System Application Look
and Feel Guidelines”, PCaPAC 2002, Frascati, October
2002
[4] I. Verstovsek et al. “The New Abeans and CosyBeans:
Cutting Edge Application and User Interface
Framework”, PCaPAC 2002, Frascati, October 2002
[5] G. Milcinski et al. “Developing a Control System
from a Divan Bed”, PCaPAC 2002, Frascati, October
2002
[6] D. Vitas et al. “A Generic Simulator of Control
Systems For Application Development and Testing”,
PCaPAC 2002, Frascati, October 2002
[7]
http://java.sun.com/products/jfc/tsc/articles/getting_starte
d/getting_started2.html
[8] http://www.eclipse.org/

