
TINE RELEASE 3.20: STATUS REPORT
Philip Duval, DESY, Hamburg Germany

Abstract

The dominant control system in the HERA
accelerator is TINE[1],[2]. TINE is playing an
increasingly important role in the pre-accelerators at
DESY as well as in Zeuthen. Furthermore, recent
efforts have made the EPICS2TINE [3] translator a
viable alternative to EPICS over Channel Access.
TINE has also been successfully integrated into
DOOCS [4] so that DOOCS clients and servers can run
happily over TINE as opposed to SUN RPC. TINE
plugs for Abeans [5] as well as COACK [6] have also
been developed. As one might surmise then, demands
on and from control system components have made
TINE extremely flexible and adaptable to a wide
variety of operating systems and platforms. The most
recent release of TINE (Version 3.20) offers many new
features, some of which are completely unknown in
other control system protocols (such as network
subscriptions via multicast). In this report, we shall
give a status report on the TINE control system
highlighting the latest features available in release 3.20.

1 INTRODUCTION

For the most part, TINE defines a data-exchange
protocol, which can be used as the basis for a control
system. As a control system proper, it does not specify
a hardware layer and it in this aspect “do-it-yourself”
oriented. On the other hand, where database driven
servers are desired, TINE can run on top of say an
EPICS database and in lieu of Channel Access.
Likewise, TINE can run on standard DOOCS servers.
On the other hand, as the hardware layer is unspecified
TINE can provide a “flexible response” to advances in
industry where the “latest IO platform” doesn’t need to
be first properly incorporated into the control system
before it can be used.

TINE follows the traditional “Client-Server”
dichotomy, where the control system elements play
either the role of (and have the characteristics of) a
server or a client. Servers can be attached to hardware
(Front End Computers – FECs) or can provide middle
layer services. They have unique names and addresses
and are known on the net via database or name server
(i.e. they do not broadcast their services). Clients are
“anonymous” and can exist in multiple instances
anywhere on the network. By this, we mean that
clients are nowhere entered in a database, and several
clients can appear bearing the same name. (Each
computer on the ethernet must of course have a unique
address). Clients find Servers by querying the
equipment name server.

2 THREE-FOLD INTEGRATION

Perhaps the most distinguishing feature about TINE
is its integration of client and server components of
vastly different networking environments. To begin
with, TINE is a multi-platform system, running on
legacy platforms such as MS-DOS, Win16 (Windows
3.X), and VAX and ALPHA VMS, as well as Win32
(Windows 95,98, NT, 2000, XP), most UNIX
machines including Linux and FreeBSD, and
VxWorks. TINE is also a multi-protocol system to the
extent that IP and IPX are both supported as data
exchange protocols. In this day of the internet, IPX
should be regarded as a ‘legacy’ protocol, but is
nonetheless supported where an IPX stack exists.
Finally, and perhaps most interestingly, TINE is a
multi-control system architecture system, allowing
client-server, publisher-subscriber, and producer-
consumer data exchange in any variation. A recent
innovation in the TINE data-exchange package also
includes a hybrid between publisher-subscriber and
producer-consumer, which might be called producer-
subscriber and brings to light the idea of a ‘network
subscription’.

This is an important feature of TINE, so we will
expound open it in a bit more detail below.

Client-Server: A traditional data exchange
mechanism available in most control systems is pure,
synchronous client-server data exchange, where a
client makes a request and waits for the completion of
the request. This is generally used to change hardware
settings for instance. However polling front ends to get
display data becomes very inefficient when the number
of clients is large (> 10 say).

Publisher-Subscriber: For many cases, a much
better approach is the publisher-subscriber data
exchange. Here a client (the subscriber) communicates
its request to a server (the publisher) and does not wait
for a response. Instead it expects to receive a
notification within the timeout period. This can be a
single command, or for regular data acquisition it can
be a request for data at periodic intervals or upon
change of data contents. In this format, the server
maintains a list of the clients it has and what they are
interested in. This is much harder to program than
simple client-server communication, but the payoff is
large. As all data exchange is scheduled by the server
instead of the client, the problem of a large number of
clients is reduced by an order of magnitude or more.
When the number of clients is very large (~100), one
could consider yet another mechanism: Producer-
Consumer.

Producer-Consumer: A third alternative for data
exchange is the Producer-Consumer model. In this
case a server is the producer. It transmits its data via
broadcast or multicast on the control system network.
Clients (i.e. consumers) simply listen for the data. This
is frequently the appropriate data transfer mechanism,
when the number of clients is large. For most control
systems, there are certain parameters of system-wide
interest. At HERA for instance, the Electron and
Proton beam-energies, beam-currents, beam-lifetimes,
etc. are made available via system broadcast at 1 Hz.
As soon as multicasting is enabled across all routers at
DESY, this will in fact be changed to a multicast. Note
that in this case, a server has no knowledge of clients
whatsoever. Furthermore, clients no longer get what
the want via a contract. Instead they get what has been
produced on the network.

Producer-Subscriber: A very attractive alternative
to the above data-exchange mechanisms is the
Producer-Subscriber mode. On the surface, this looks
like the Publisher-Subscriber model, except that the
calling subscriber can request that the contract be sent
to for instance his entire subnet or his multicast group.
Then if such a client program is started on many
stations, a server ‘sees’ only one client, namely the
network. This reduces the load on the server, and can
dramatically reduce the throughput requirements for
the server, if say images from it at a high rate on many
stations. As always, one should use this mode of
operation where it makes sense. Note that if all control
system elements are transferred this way, then all
applications will see all control system traffic at the
application layer (whether the data is to be thrown
away or not). This could place an unnecessary load at
the client-side.

Full details of the TINE protocol, its systematics,
functionality, and operability are given in reference [1]
and [2], as are descriptions of available services.

3 NEW IN RELEASE 3.20

MULTICASTING: All globals and multicasting
sockets now use the SO_REUSEADDR option, so that
daemons are no longer required on any platform.
Furthermore, the socket is not opened unless the
application makes a request to receive globals or
network subscriptions. The means that all applications
on the same station making such requests will end up
processing the incoming data individually, but turns
out to be a much more efficient scheme of handling
network data, particularly if java and C clients are
running simultaneously.

Property REDIRECTION: A server can export a
property which lives on another server. A redirection
string can be specified, interpreted as <deviceServer> /
<deviceName> [deviceProperty]. Requests to the
server for the exported property will then be redirected

to the device server given. If [device property] is
given, the property name will also be redirected,
otherwise the same property name is expected to be
found on the redirected server. In any case the
<deviceContext> and <deviceName> are assumed to
be the same on the redirected server. Note: by
specifying the <deviceName> in the redirection tag,
you are instructing the server to redirect requests for
the given property only for the specified device.

Assigned ERROR VALUES: On the client-side, it is
now possible to assign error values to data upon status
error. Upon error, the contents of the buffered data
array will be filled with the assigned error value. This
gives a client programmer an easy way 1) to display
faulty data (e.g. give a value out of range so that it
catches the eye) and 2) to determine which data are bad
inside of grouped calls.

Comprehensive property QUERY: All information
for the requested property can be queried with one call.
This includes input and output data types and lengths,
engineering units, ranges, history information, etc., and
for all overloaded properties (for those cases when the
same property can be called with different format types
and lengths).

DEVICE LISTS per property: It is now possible to
register deviceQueryFunctions so that a property can
be queried for its associated devices. The returned lists
can be completely independent from one another. This
is a very useful feature for certain middle layer servers
(archive, alarm, gateways, etc.) which might be
providing information for both vacuum pumps and
beam position monitors. A new 'meta' property '.NAM'
was introduced to facilitate the above feature. Thus,
each registered property <deviceProperty> implies an
associated property <deviceProperty>.NAM which can
return a list of device names.

Remote access to LOG FILES: New stock properties
are available for acquiring and manipulating the server
log files. For servers without a disk (e.g. VxWorks) it
is possible to maintain a virtual log file in memory,
reflecting transactions since server startup

Better WILDCARD HANDLING: The wildcarding in
property and device queries is now more extensive. It's
now possible to query "*ABC*". Previously the first
wildcard '*' terminated the search string.

More control over BURST PARAMETERS: It is now
possible to adjust some of the transmission parameters
away from their default settings. This becomes
important for extra large data transmissions (hundreds
of Kbytes). Initial tests show that over 7 MBytes/sec
can be reliably transmitted (e.g. ~450 Kbytes at 20 Hz
with a loss of 4 frames per minute). This order of
frame loss can be considered reliable for video signals.
Note that this benchmark is also valid for a
"NETWORK" subscription (i.e. the server can
multicast this information) meaning that N clients
(with N large!) can get the information simultaneously
with no extra drain on the server.

5 CONCLUSIONS

The flexibility of TINE has been invaluable in
integrating the HERA front ends into a working
system. Just as important, it has demonstrated a
transparent way to progressively upgrade existing
hardware. Where for practical reasons the latter must
remain on “older” platforms and operating systems,
TINE servers can nonetheless be installed and
maintained. When it becomes practical to “modernize”
front-end elements, this can be achieved piecemeal,
without any blanket restructuring. The implementation
of TINE at DESY is PC-dominated. Although TINE
works fine in say a pure UNIX world, the number of
GUI tools developed for PC consoles running Win32
make the latter (currently) the most attractive platform
on the client-side.

Where are areas of applicability for TINE? Since
TINE is based on sockets, and not on something
‘modern’, such as DCOM or CORBA, one might be
inclined to dismiss it as a relic which found its niche in
HERA. Nothing is farther from the truth. At the
developer’s end, the tools offered are as modern as
anywhere (ActiveX, Java, MatLab, LabView, etc.).
The transport layer is of course invisible to the

developer. Furthermore, neither DCOM nor CORBA
runs on the number of platforms supported by TINE.
A switch to either one would immediately dispense
with several legacy platforms such as MSDOS,
WIN16, and VMS. Finally, both DCOM and CORBA
work in a unicast world. The ability to multicast or to
have ‘network’ subscriptions would be completely
missing. When any of these considerations (legacy
platform support, multicasting) is important, TINE
should be considered as one of the best alternatives
around.

REFERENCES

[1] P.Duval, “TINE: An Integrated Control System for
HERA”, Proceedings, PCaPAC’99, 1999.
[2] http://desyntwww/tine
[3] Z. Kakucs, P. Duval, M. Clausen, “An EPICS to
TINE Translator”, Proceedings, PCaPAC 2000.
[4] http://tesla.desy.de/doocs.
[5] I.Verstovsek et al., The New Abeans and
CosyBeans: Cutting Edge Application and User
Interface Framework, PCaPAC02, Frascati 2002.
[6] I.Abe, et al., “Recent status on COACK project”,
Proceedings, PCaPAC 2000.

