
CONTROL SYSTEM APPLICATION LOOK AND FEEL GUIDELINES

M. Kadunc*, J. Kamenik, I. Križnar, G. Pajor, M. Pleško, A. Pucelj, I. Verstovšek,
J. Stefan Institute and Cosylab Ltd.

Abstract
Control system applications, usually developed using

modern RAD tools, are often inconsistent and do not meet
the visual or functional requirements of the users. To
avoid such problems, Cosylab[1] adopted a set of
guidelines for writing good user interfaces. Most of these
guidelines were gathered by studying various user
interface approaches in control system and common PC
applications[2,3], identifying specific problems and
finding the most acceptable solutions. This paper briefly
discusses the choice of a color scheme for control
widgets, labels and other components often used in
control panels, as well as their layout on screen or in a
window. Font, case and language of different texts used in
applications are also suggested. Furthermore, it focuses
on the interaction between the user and the computer, first
by enumerating and evaluating ways of displaying
messages to the user, and then by addressing accessibility
issues, such as keyboard shortcuts, contextual (pop-up)
and window menus, toolbars etc. Finally, it addresses the
customization of application workspace and the problem
of finding a balance between user-specified and default
look and feel of the applications.

1 INTRODUCTION
When a new control system is being developed, most of

the time is spent programming the server architecture,
integrating the hardware equipment, writing drivers,
network protocol, client access libraries and application
programming APIs. While all of these are very complex
pieces of software, writing applications and especially
designing graphical user interfaces is usually considered
to be a simple task, done either by physicists who are not
professional software developers, but rather the intended
users of the applications, or by programmers who
otherwise have more “important” things to do, but have to
write the applications because the operators really need
them. Many people end up writing applications, each with
a different sense of design and a different definition of
user-friendliness. On the other side, there are the control
system operators, who will use the applications daily and
thus ask for consistent, intuitive, easy-to-use, appealing
and, if possible, customizable look and feel of the
applications.

At Cosylab, we defined a set of guidelines for writing
user interfaces and encouraged our developers to use
these guidelines. We appointed a single person to be
responsible for the GUI look and feel, inspecting the work
done by other programmers, suggesting improvements
and helping them write good user interfaces. We also
decided to design a set of useful GUI widgets, stored in a

common repository and accessible by anyone writing
applications. The widgets are designed to be consistent
with the Java™ metal look and feel, using standard
colors, fonts, borders, keyboard shortcuts and mouse
actions. They are intended to minimize the effort needed
to design and implement an application user interface.

2 VISUAL DESIGN
2.1 Colors

Use a simple color model, with no more than two
different basic colors for default functionality and a
standard set of colors to communicate additional
information to the user. Background and borders of
components should be rendered using light, non-saturated
colors, which do not distract the user and are natural to
the eye. These are typically shades of gray. Selected or
focused items should use a more saturated, neutral color
such as blue. Text should be rendered using black and
should have a white background when editable.

Other colors should have a special meaning and they
should be used consistently across applications. Most
common colors are: strong red for errors, green for start,
yellow for warning, etc.

An application may define its own colors with an
associated meaning to clarify the user interface and
identify certain items, but no more that seven different
colors should be used, otherwise the users will have
difficulty remembering their meaning. Use darker,
saturated colors, but make sure that they are not too
similar to the standard colors mentioned above.

2.2 Application Graphics and Animation
Icons, button graphics and symbols are very useful to

visually represent an action or an item without using a
large area of the application. Graphics in applications
should be very simple, easy to remember by the users and
should identify clearly the objects or concepts they
represent. A “family” of icons that identify similar actions
or concepts should utilize common visual elements to
separate them from other groups of icons. Color rules for
images are not as strict as for the rest of the application
controls, but you should nevertheless use a limited set of
colors and avoid large areas of saturated colors, such as
pure red or pure blue.

Animation can provide effective emphasis if used
correctly, but a GUI designer should give careful thought
whether an animation is appropriate. Limit animations
only to situations where they provide meaningful
feedback to the user, do not interfere with the user’s work
and do not detract the user from more important screen
elements.

__

*miha.kadunc@cosylab.com

2.3 Fonts and Text
Text is an important design element and appears

throughout the application in labels, buttons and other
components. To ensure consistency, ease of use, and
visual appeal, only one simple font style in no more than
three different sizes should be used for the whole
application. For most applications, only one font color
(preferably black) should be sufficient. Other colors
should be used to help the user identify certain values or
to notify the user that an unexpected situation appeared.

Language used in applications should be clear, concise
and consistent, with wording that is readable and
grammatically correct. Use headline capitalization for
most of the names, titles, labels and short text, sentence
capitalization for lengthy messages. Only one language
should be used otherwise users might get confused.

2.4 Borders and Layout
Borders are commonly used to visually separate

logically different parts of an application. Similar borders
are also parts of components used in applications.
Application designer should use a single style of borders
throughout the application. The borders’ color should be
similar to the component background color, different
enough for the user to notice the border, but moderate
enough not to distract him from important data. Borders
should be used as an orientation only, not to impress the
user with colors and shapes. One should use borders only
to make an application clearer to the user.

GUI designers should give careful consideration to the
layout of components in windows and dialog boxes. The
best designs are aesthetically pleasing and easy to
understand, enabling the user to move through an
application and utilize its features effectively.
Components should be laid out in a logical order, with
more important components in the center, on top and to
the left of the application, less important components at
the bottom and to the right. The main application window
should only contain components that will most probably
be used by the operators during normal operation.
Additional functionality and optional application features
should be available via application menus and displayed
on demand.

The layout should maintain its visual appeal and
functionality if the application window is resized. In most
of the graphical environments, there are many
components that facilitate creation of resizable layouts,
such as scroll panes, split panes, tabbed panes, layout
managers, utility windows, internal windows and other.
With the use of such components, users have more
control over the appearance of the application and can
enlarge or expose individual areas that they are interested
in.

2.5 Menus, Toolbars and Tooltips
Menus have to be well organized so that the operators

can navigate them intuitively. Thus it is best to implement
standard menus like File, Edit, View, Help, etc, which

most users are already familiar with. These primary
menus positioned in the menu bar should be equipped
with keyboard mnemonics (ALT + letter) for faster
access. Item names should be capitalized and one word in
length to be easily recognized. Secondary menus’ names
can be longer. Menu options containing submenus should
indicate this with an arrow displayed next to the name and
menu actions invoking a dialog should indicate this by
displaying three dots (“…”) next to their name. If a
toolbar button exists invoking the same action as a menu
option, the icon of the toolbar button should be displayed
on the left of the menu option to indicate this. Finally, a
separator line should separate groups of similar actions in
a menu.

Popup menus can be very useful for configuring and
performing actions on individual components in an
application In principle all actions from popup menus
should also be accessible through the main application
menu bar.

Toolbars should be placed at the edges of the
application and should take up 20 to 30 pixels of screen
height. All toolbar actions should also be accessible
through application menus while all buttons on a toolbar
must be equipped with a descriptive tooltip text.

 Tooltips are very useful since they educate and inform
users about the functionality of the application. When
using tooltips, buttons can be stripped of all text and be
distinguished by icons only. New users read the tooltips
to learn the functionality of the corresponding buttons
while experienced users recognize buttons by their icons
and can ignore the text.

3 BEHAVIOR

3.1 Messages
The user has to be informed about any event that

occurred inside an application without his direct
initiation. Actions taking considerable time to complete
should indicate their completion status via an hourglass
cursor and a progress bar when appropriate and
meaningful. The user also has to be notified upon their
completion. Expected and frequently occurring messages
can be displayed in a status bar or preferably in a special
textual report area, while unexpected and important
messages should be displayed in a special message box. If
the operator attempts to perform an action that would
seriously affect the application or the control system, a
warning window should appear allowing confirmation or
rejection of the attempted action as to prevent accidental
misacting. Finally if the startup of an application takes
more than a couple of seconds, a splash screen should
appear possibly displaying the current status of
application initialization. It is advisable that all messages
be saved in some log that the user can later inspect.

3.2 Dialogs and Wizards
Dialogs and wizards should be accessed through menu

options marked with three dots (e.g. “Options…”). The
first are to be used for configurations and more important,

less frequently used actions, while the second are used for
complex tasks that can be split into smaller steps and
presented to the user one step at a time.

A typical dialog is of fixed size and contains a few text
fields, check boxes and radio buttons together with a pair
of control “OK” and “Cancel” buttons (“Apply” may be
included if appropriate) in that order. The control buttons
should be placed in the lower right corner of the dialog,
while the design of the rest of the components above them
should follow the same guidelines as the rest of the
application. The “OK” button should be the default
command that can also be accessed through the “Enter”
key on the keyboard while pressing the “Esc” key should
be equivalent to the “Cancel” command.

The layout of a wizard should be similar to that of a
dialog: control buttons “Back”, “Next”, “Finish” and
“Cancel” should be placed in this order in the lower right
corner. The “Next” button should only become enabled
after all critical parameters have been validly set in a
panel, while the “Back” button should always be enabled
to allow user to correct parameters set in previous panels.
Pressing the “Finish” button should set all the parameters
on remaining panels to their default values and complete
the wizard.

Dialogs and Wizards should be modal, i.e. they should
block access to other parts of the application. If there is a
good reason for not doing so (when application should be
responsive while the dialog is displayed) they should be
displayed on top of the application.

3.3 Mouse and Keyboard Actions
Mouse actions should be used for switching focus

between parts of application, selecting text or other
elements, operating graphical controls like buttons, check
boxes, etc… and drag and drop (d’n’d) operations. In
general, keyboard equivalents should be implemented for
all mouse operations inside an application.

The following keyboard shortcuts should be
implemented in all applications: The TAB key should be
used for switching between components (Shift + TAB in
textual components where TAB has a different meaning)
and ALT + letter for activating individual components
with mnemonics. Inside a component or menu the
arrowed keys should be used for cursor, focus or selection
movement. Keyboard shortcuts for copy (Ctrl + C), cut
(Ctrl + X) and paste (Ctrl + V) operations should be
implemented where appropriate. The Space key should be
used for activating buttons, check boxes and radio buttons
in focus and for selections while Ctrl + Space should be
used for adding selection and Shift + Space for range
selection. The Esc key should be used to dismiss a menu
or a dialog box without changes or to cancel a d’n’d
operation in process. The Designer of the application
should make sure that no implemented shortcuts in any
context inside the application interfere with any existing
shortcuts in any operating system the application is
designed to run in.

4 DESIGNING WIDGETS
Individual graphical widgets are usually not stand-alone

end-user products but are designed to be used and reused
in different contexts inside an application and even in
different applications, thus great care has to be taken in
their visual design to reflect their reusability and
adjustability. Standard colors should be used in all
widgets so that they cohere well with the rest of the
application. The designer of a widget should focus on
details, especially insets and borders, as they dictate how
the widget will connect visually to other components in
its context.

Another important aspect of its visual design is the
widget’s adjustability to different sizes and different user
(programmer) needs. If possible, different visual and
functional modes should be implemented to be switched
between in different contexts. A component used for
displaying numbers could have a simple mode showing
only the number, or an extended mode which would also
display the maximum an minimum values, units, average
etc. Still it is important for the widget to retain some of its
common characteristics and that it is easily recognizable
in all of its modes

The designer should implement support for as many
ways of controlling the widget as possible. Keyboard
shortcuts for switching focus inside the widget, standard
action keys, arrow keys for moving etc. should all be
mapped. Mouse buttons and mouse wheel should be put
to some use if possible. Furthermore d ’n’ d and copy-
paste support for values and texts should be implemented.

Tool tip text should be applied to all buttons and other
active components of the widget.

5 CUSTOMIZATION
Use customization when you consider that the

application’s functionality might be increased if the users
specify their own appearance and behavior. Users should
not be bothered with every detail of the application’s look
and feel, such as picking appropriate colors, moving the
components, specifying shortcuts etc. - this is the work of
the application designer. They should only choose
between a small number of relevant options, all of which
should produce a consistent, appealing and functional
look and feel. The configuration should be persistent,
allowing the users to save their settings and load them the
next time they use the application.

6 REFERENCES
[1] http://www.cosylab.com/
[2] Sun Microsystems, Inc., “Java™ Look and Feel

Design Guidelines, Second Edition”, Addison-Wesley,
February 2001.

[3] D. Springgay et al., “Eclipse User Interface
Guidelines”, Object Technology International and
others, February 2002

