
Abstract
As the DOOCS control systems, operating the TTF

Linac at DESY, is a widely distributed system, running in
TTF phase 2 on approximately 50 front-end and middle-
layer computers with 5 to 10 server processes on each
processor, a system with local log files is not sufficient
anymore. In addition a central logging of all error and
warnings will be needed.
We will propose a system based on Web Services
running JAVA servlets on the central server(s) allowing
the operator to get an overview of the machine status, as
well as getting information of single devices by browsing
through a tree like structure closely connected to the TTF
nomenclature. This server stores the information in XML
files, allowing the usage of standard XML tools like
search functions.
The communication from the front-ends will be
implemented reliable, independent and stateless on a
common standard to be portable to different
architectures.
First implementations will be discussed.

1 MOTIVATION
The first motivation for this project is to improve the

system of local log files for every device server and
extend it with a concept of a central error and info server.
In our terms errors are messages automatically generated
by the front-end servers, a class D_error is provided with
every location holding information like error number,
error message or severity. Whereas info's are messages
typed in by an operator or expert to better explain a
behaviour of a device, again a property per location is
derived from the base class. It is called DEVICE.INFO,
is of type D_ustr and containing basically a severity
number, a time stamp and a 80 character string. These
two types of information should now be combined on a
central error and info server. An other idea is to provide
the users the choice of combining the logs to their needs,
starting from the logs of the complete facility, looking on
one device type or analysing just one particular location.
A further motivation is to learn programming in the
concepts of Web Services and extend the DOOCS[1]
environment towards the Web.

2 REQUIREMENTS

2.1 Front-end server
A lot of the CPU's that will be used in TTF2 are still be

old computer with memory between 32 and 96 Mbyte.
For these CPU's a programming language that requires
much memory is not acceptable. For this reason, the
front-end part will be implemented in C++ into our
standard DOOCS server library.

2.2 Error and Info Server
The central error an info server will run on a state of

the art hardware, so any restrictions about memory or
disk space are no concern. For TTF2 the error server
needs to keep the actual errors and info strings of up to
150 front-end and middle layer servers with 1 to 200
locations. This leads to approx. 100000 XML nodes in
one central DOM tree. This server has to receive calls
from DOOCS servers, but other system interfaces may be
required at TTF2. In the case of TINE an integration will
be simple, because this protocol is already an integral
part of the DOOCS server library. For other system a
simple socket library could eventually be provided.

2.3 Servlets
There are different servlets needed for transferring the

whole DOM tree, sending the actual messages via Java
Messaging Service JMS to the active displays and to
combine the history XML files for the display. These
servlets will work in the Tomcat[4] environment.

2.4 Display
The display should run on a wide range of computers

so a Java applet is the obvious choice. The start-up of the
display should not take longer then 10 second and actual
messages should reach the display in less then a second.
Browsing through the devices in a
hierarchical tree should be possible, on every node the
status of the subtree should be visible.[5] An
acknowledgement of an error on the front-end should be
possible.
A standard Web browser can also be used to display the
error status.

3 TEST OF XML DATABASES
The first idea was to store the XML data into a XML

database instead of creating a directory structure in a
filesystem and then storing every message into a separate
file. The hope was, that this database will support us in
combining all the different XML messages and providing
a simple search and query solution. For this reason an
XML test file with around 160000 XML nodes were
created to test the performance of the following
databases:

� XIndice , an Apache project written in JAVA, but
good for small XML data sets (<50KBytes) only. The
searching speed is very slow.

� EXist , a SourceForge project, is similar to Xindice,
base on the same architecture, written in JAVA as
well, but has problems in Xpath calls. Because of this
no real performance test was possible.

� Infonyte, a commercial database for XML
documents up to 1TByte, much faster, but still too
slow. A search request needs about 7 second to
answer. The price is ~5000 Euro and seems
acceptable.

A Proposal for a Central Error server using Web Services

O.Hensler, R.Kammering, K.Rehlich DESY 22607 Hamburg, Germany

� Tamino, an other commercial database from
SoftwareAG, written in 'C' language.This database
seemsto be fast enough,but is very complex.The
complete XML structure is locked during an update of
one node.
Unfortunately the price is with 40000 US$ / CPU
very high.

� libxml2 is an XML library used for the internal
communicationin the GNOME project. It is a very
fast,comprehensive“C” implementationto managea
DOM treein memoryandto parseXML files. It is an
Open Source project and available for different
platforms.

4 CONCEPT

4.1 Front-end server
In orderto keeptheprovedconceptof DOOCS,on the

front-endserverno additionalprotocolswill beadded.A
new datafunction classcalled D_xml is createdto hold
the XML string. This string can thenbe sendby a usual
DOOCS RPC call to any client.
The D_error will be extendedwith a D_xml type for
creatinganXML errormessage.Whenan errorchanges,
this XML stringis sendto theerrorserver.To do thiscall
a threadis createdin orderto avoid interferencewith the
standardserveroperation.In caseof transferfailure, the
server needs to store the message to retry later.

4.2 Error and Info server
The error server side is divided into two processes :

A standardDOOCSserverwill be usedto build up the
DOM structure of all error and info messagesin its
memory using the XML library libxml2[2] from the
GNOME[3] project.This library is written in C andtests
proved it as a very fast implementation.The server
receivesthe error messagefrom the front-ends as an
XML string.This string is parsedto find the tags<loc>,
<dev>, <loc> and <prop>, which correspondsto the
DOOCS nomenclature

“FACILITY/DEVICE/LOCATION/PROPERTY”. These
information are used for some simple tests and then
insertedinto the main DOM structure.Further they are
used to createthe directory structureand to store the
XML messageinto a files. The directory structure
correspondsdirectly with the nomenclatureof the
control system. For every location one directory is
created and then all incoming XML files of that particular
device will be stored inside. This builds up a kind of
logging history for every device.
For everyerror messageonethreadwill be createdto do
theprocessingof thedata.This error-serverwill build up
a list of active front-endserversin order to checkthem
from time to time or to starta initial run at start-uptime
of theerror-server.This errorservercanbeconfiguredby
a propertyto accept only logs from acertainfacility, e.g.
TTF2 or HERA to avoid logs from test systems.

4.3 Java Servlets
A JAVA servletwill beusedto transferthemainXML

structure to the display applet or to a standardWeb
browserusing the Tomcat[4] Web serviceenginefrom
the Apacheproject. The communicationwith the error
server will be done with the Unix
InterProcessCommunicationIPC. For this purposethe
servlet is using the C-interface of Java.

4.4 Display
The display for the operatorwill be a JavaApplet as

shownin Figure2. On the left side,theoperatorseesthe
device tree structurethat allows to browsethrough all
devicesof the Linac. By selectinga node one gets the
history entries of some devices or just a single location.
On the top, one has a ticker like window showing the
most recent messages from the complete accelerator.

Figure 2
From this appletinteractionwith the control systemlike
acknowledgingof errorswill be doneby the useof the
jDOOCS[6] Java library.

5 WHAT HAPPENS WHEN ?

5.1 The error server starts up
Whentheerrorserverstartsup, it readsthemainDOM

tree, by parsingthe regular storedXML file. A list of
active front-endserversis created,then the error server
asks the frond-endserver via an RPC call to sendall
informationof all locations.This synchronisesthe main
DOM structure of the error server.

5.2 A frond-end server starts up
Whena front-endserverstartsup, it sendsall theerror

and info information from every location to the error
server.This is the samedatathe error servercanaskfor
via the RPC-call.

5.3 Testing for online front-end server
The error server needs to test from time to time,

whethera front-endserveris still alive or not. It will be
doneby a similar RPCcall like the watchdog.In a case
of failure, the completetreeof locationswill be marked
as error.

5.4 A location is added
A new location of a devicecan only be addedduring

serverstart-up.In this stagethe front-endserversendsall
information and the new device is added.

5.5 A location is deleted
If one or more devicesare missing after a front-end

serverstart-up, theywill bemarkedas“gone” in the tree.
We haveto decidewhetherwe needa userinteractionto
deletethe deviceon the error serveror the error server

checks for this device on the front-end server and
eventuallydeleteit automatically.Eventually this could
be done after a certain time period of some days.

5.6 A location is renamed
We have the situation, that some devices have a

locationname(weretheyareat themoment)andanalias
name(whenthe deviceis offline). This will leadto two
entriesin thedirectorytree,but this is noproblemaslong
as the front-end serversendsa messagewith the new
location name.

6 CONCLUSION
Thecompleteprojectis still in thedevelopmentphase,

but all relevantpartsaretestedunderrealcircumstances.
So no major obstacles are expected anymore.
Unfortunatelya moreeasyimplementationwith the help
of an XML databaseturnedout to be not feasible,cause
thesedatabasesaretoo slow.A goodtool seemsto bethe
XML library from the GNOME project, sinceit is very
fastandoffersall neededfunctionality.It will beusedfor
the implementationof main parts of the error and info
server.

7 REFERENCES
[1] http://doocs.desy.de
[2] http://www.xmlsoft.org
[3] http://www.gnome.org
[4] http://jakarta.apache.org/tomcat
[5] General State and Alarm Monitoring System for
ConSys, Torben Worm PCaPAC 2000
[6] jDOOCS – a Java Library for DOOCS
 V.Kocharyan YerPhI, Armenia

