
DATA BASE SERVER ON THE VEPP-4 CONTROL SYSTEM*

D. Filimonov, S. Karnaev, B. Levichev, A. Nikiforov,
I.Protopopov, S. Smirnov, A.Veklov,

BINP, Novosibirsk, Russia

Abstract
The VEPP-4 control system was designed almost 20

years ago as distributed CAMAC-based control system
[1]. The CAMAC-embedded 24-bit Odrenok computers
are used in the system as the main control machines. The
main problem of the control system further development
is the change of the obsolete computers on PC. For
ensuring the access to equipment and data for programs
working in PC computers, the host-based database was
designed.

The communication software is Linux-based and
includes the Application Server (AS) in the host machine
and Device Servers (DSs). The AS provides channel and
database access for user applications. DSs provide
interaction between AS and executive programs working
in executive computers, connected to electronics. The
backend database server is based on PostgreSQL.

This paper describes a structure of the VEPP-4 control
system database server and the database access
procedures.

1 INTRODUCTION
The VEPP-4 Control System includes 14 home-

developed Odrenok computers [1] integrated in the local
Ethernet domain. PCs under Linux are used as operator
consoles in the Control Room. The following programs
are running in the PCs:
• Odrenok terminal windows,
• Odrenok file-boot server,
• Graphical applications for visualisation of the

different data received from Odrenoks [2],
• New beam diagnostic applications and applications

for providing experiments on ���� ���� �� ��	
����

mass measurement [3].
Further development of new programs in PC was

restrained by lack of the united database that includes the
data about structure of the facility, control and measuring
channels, etc. This data is distributed between different
files in Odrenok's file system and it is very difficult to get
them from PC.

At the present time, the united database is designed. It
consists of about 30 PostgreSQL tables. The database
system provides the following functions:
• remote access to the data from PCs,
• remote access to control and measuring electronics,
• exportation of the data from PC to Odrenok and back

for providing functioning of the Odrenok's software.

2 DATA BASE SYSTEM ARCHITECTURE
All the data about the operational facility is divided into

two parts:
• static data - description of the facility's parts,

electronics, control and measuring channels, saved
operation modes, etc.,

• dynamic data - present state of control and
measuring channels, i.e. values describing a present
operation mode of the facility.

The static data in the database system is distributed
between relative PostgreSQL tables. The dynamic data is
in electronics and in special programs Device Servers
(DSs). All communication with electronics are realised
via DSs.

The data base system architecture is shown in Fig.1.

The kernel of the database system is the Application
Server (AS). It provides the following functions:
• handling of the requests from client applications,
• interaction with DSs,
• interaction with PostgreSQL.

AS handles the requests from client applications by
reading information from PostgreSQL and sending in the
own turn requests to DSs.

DSs are the programs which are either directly
connected to the electronics or communicate with low-

* This work is supported in part by Russian Fund of Basic Research
(N02-07-90108)

Application
Server

PostgreSQL
Server

Device
Server

Device
Server

<<TCP/IP>>

<<TCP/IP>>

<<PSQL protocol>>

Ethernet or other

Client
applications

Electronics

Figure 1: The data base system architecture.

level programs connected to the electronics. DSs provide
the next functions:
• receiving requests from AS and transfer them to

electronics or to low-level programs (in our case to
programs in Odrenoks),

• sending to AS Alarm signals.
DSs when started are registered on AS and report the

area of their responsibility.

3 DATA BASE TABLES STRUCTURE
There are about 30 relative PostgreSQL tables for static

data storing. All tables are divided into 4 groups:
• facility structure description,
• electronics description,
• control and measuring channels description,
• stored operation modes.

Full structure of the VEPP-4 data base tables is shown
in [4].

3.1 Facility Structure Description Tables
The whole structure description of the facility is a

hierarchy of objects of different types. There is a pointer
to the up-level object in the description of each object.
The root record in the structure is the object 'VEPP-4
facility' (see Fig.2). Object types are stored in the separate
table.

For description of the different characteristics of the
objects, the conception 'parameter of object' is used.
Parameters provide qualitative and quantitative
descriptions of any type of objects, for example:
quadrupole type object has placement azimuth, length,
magnetic field gradient, current/gradient factor, resistance
parameters. Both parameters and parameter types are also
stored in the separate tables.

3.2 Electronics Description Tables
For the description of the electronics, the following

hierarchical structure is used: computer - crate - module.
The crate is the logical assembly of modules (for
instance, CAMAC-crate, MilStd-line) in which the
module is uniquely identified with a simple characteristic
(position, address, etc.).

The data about modules and crates are allocated into
four tables: crates and modules description, crate types
and module types.

The description of the crate-computer connection uses
conception 'path to crate'. Path to crate includes a list of
components and components' values which uniquely
identifies the physical address of the crate. There are
several types of paths in the Control System, i.e. there are
several types of computer - crate connection. Also, there
are several types of path components. The example of the
path from Odrenok to CAMAC-crate with three
components is shown in Table 1.

Table 1: The path to crate
(type of path is "DS24-CC24")

Path
comp.

number
Component type Value

1 Position of DS24
interface module

12

2 Module channel 1
3 Number of interruption

from crate controller
10

3.3 Channels and Elements Description
For the control system description, from the standpoint

of intercoupling of the electronics and the controlled
devices, the conception of channel is used. The channel
description contains the information about the physical
value/ module code factor, value range, etc. Logically,
channels are united into elements.

For description of channels and elements the following
main tables are used:
• the element types table,
• the elements description table,
• the channel types table,
• the channels description table,
• the multiplex elements description table.

 There are different types of channels: control channels,
measuring channels, switch (bite) channels, etc. In spite
of heterogeneous data (table fields) for different type
channels, the channel description table contains
descriptions of all types of channels. This approach gives
advantage in access time and simplifies the software.

There are multiplex elements (so-called 'handles') with
one or two input/output values. I/O values of multiplex
elements have matrix translation to/from values of
channels included into these elements. Here is one-I/O
matrix element example: the value of the storage ring
'energy', evaluated via coil current values in bending
magnets.

3.4 Operation Modes Tables
The operation mode is a set of values of control and

measuring channels, corresponding to the status of the
part of the facility or group of devices.

For stored operation modes, the following tables are
used:

VEPP-4
facility

Cavity 2

POSITRON
injector

VEPP-3
storage ring

VEPP-4M
collider

El1 lens EL2 lens EM3 magnet

MSVEPP-4
Odrenok

RF system

Magnet
system

Cavity 3

EL1 coil

Figure 2: The objects structure.

• the operation modes groups table, which allow us to
aggregate stored modes, providing for different
processes at the facility (acceleration, magnetic
reversal, etc.),

• the operation modes description tables containing the
operation mode's attributes: date and time of
recording, comments, etc.,

• the table of values of channels.
For the all stored operation modes, the same table of

values of channels is used. It is supposed that the number
of records in this table will not exceed several hundred of
thousands. In each record of the table ids of an operation
mode and a channel, and channel's value in the operation
mode are included.

4 DATABASE CONNECTIVITY LIBRARY

4.1 General Description
The database connectivity library consists of four kinds

of entities:
1. A set of storable classes representing database

structure with each class implementing ASStorable
interface.

2. A set of meta-storable classes describing
properties, those are common for any certain
storable class, such as list of filters, etc.

3. A set of filters. Filters are used for selecting a
subset of storable items.

4. Storages. There are three kinds of storages
implemented:

• ASDbStorage: directly uses database to keep storable
objects,

• ASMsgStorage: is used by client applications via
Application Server,

• ASCacheStorage: is used to cache requests to
underlying storage, either ASDbStorage or
ASMsgStorage.

This architecture makes it possible to use the same
database connectivity interface both for AS and client
applications.

4.2 Interfaces of database related classes
ASMetaStorable. This interface contains all useful

information and allows us to work with ASStorable
classes without knowledge of class type at compiling
time. ASMetaStorable is an abstract factory [5] for
creating corresponding subclasses of ASStorable and
ASStorableFilter (methods getFilter(Q_UINT32) and
create()). ASMetaStorable can create the objects from
QDataStream as well (method create(QDataStream&)).
It requires ASMetaStorable to provide obtaining an
instance of ASMetaStorable by its type id; it's easy since
each subclass of ASMetaStorable is a singleton [5] i.e.
there is only one instance in the system.

ASStorable. All concrete subclasses of this interface are
able to get itself from and to put itself into QDataStream
(methods get(QDataStream&) and put(QDataStream&),
to store themselves in storage and to obtain themselves

from storage by id (methods get(ASStorage*, Q_UINT32)
and store(ASStorage*)). Each implementation of
ASStorable has a link to appropriate ASMetaStorable
instance that keeps all meta information.

ASStorableFilter. Classes which implement this
interface contain information about fields involved in the
filtration process including fields used for sorting result
set. Filters are able to put themselves into and get
themselves from QDataStream.

ASStorage. This interface describes all methods on
single database records and methods for obtaining several
records at once:
(getStorables(QPtrList<ASStorable> *, const

ASMetaStorable*),
findStorables(QPtrList<ASStorable>*, const

ASStorableFilter *)).
This interface does not provide complex multitable
queries because there is no common need of such requests
for all types of classes. Moreover, such requests cannot be
easily coded in all current implementations of ASStorage
(ASDbStorage, ASMsgStorage, and ASCacheStorage).
There is a different way to implement such requests: an
extensible set of messages which AS and client
applications use to communicate with each other. Actual
implementation of ASMsgStorage is based upon these
messages.

5 ODRENOK - PC DATA ENCODING
Before starting the data base system, we need to fill up

the database tables with data located in Odrenok file
system. Also we need to support running the existing
Odrenok software. In order to gain this goal we
implemented two converters. The first program parses
Odrenok-encoded files and fills up database tables with
the information. The second creates files for Odrenok
programs from the database.

6 REFERENCES
[1] A.Aleshaev, et al., ‘VEPP-4 Control System’,

ICALEPCS'95, Chicago, USA
[2] A. Bogomyagkov, et al., 'Data acquisition and

handling in the VEPP-4 Control System', PCaPAC'02,
MO-P6.

[3] V. Blinov, et al., ' Linux-based Toolkit in the VEPP-4
Control System', ICALEPCS’01, San-Jose, Ca., USA,
Proceedings
http://xxx.lanl.gov/pdf/physics/0111147

[4] http://vepp4-pult1.inp.nsk.su/~vepp4/db
[5] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design

Patterns.
http://hillside.net/patterns/DPBook/DPBook.html

