
HIERARCHICAL DATA ARCHIVAL SYSTEM FOR EMS

J.M. Nogiec†, K. Trombly-Freytag, D.G.C. Walbridge, FNAL, Batavia, IL 60510, USA

Abstract

2 OVERVIEW OF EMS The Extensible Measurement System (EMS) has been
developed at Fermilab’s Magnet Test Facility to allow for
standardization of systems and to increase reuse of
software. It is a component-based framework for building
data acquisition and analysis applications. As a truly open
system, EMS does not enforce one specific way of storing
data and is capable of accommodating various archiving
methods and formats. An application can be easily
configured for many different archiving methods by
using the appropriate components. The article presents
one such solution, a two-stage, hierarchical storage
system, which incorporates both object-oriented and
relational databases. This solution accommodates the
needs for performance, program-level access to data, and
user-oriented access. The architecture and results of
performance studies are presented.

Component-based systems seem to be particularly
suitable for the R&D environment. They allow for
relatively easy reconfiguration of the system and provide
building blocks for constructing a whole family of
systems. EMS exploits the component technology with its
XML-based configuration language and bus-like
communication architecture (see Fig. 1). Systems are built
with EMS through explicit composition, by “wiring”
components together to process system objects.
Connections for control, exception, data, property, and
debug objects are defined independently. The system
allows also for the data-driven composition, where the
execution of specific data processing algorithms is
determined by the data themselves. The resulting flow of
objects in the system can be viewed graphically.

The system is controllable via graphical user interfaces
and scripting. Various components included with the
framework (horizontal components) enable monitoring of
the system resources, graphing, and run-time
modifications to application components (so-called
tailoring). Debugging and exception handling are built-
into the system, with each component being able to
produce exception and debug events. The level of detail
that is output regarding the inner workings of the system
can be set up in the configuration file and adjusted at the
run time, which has proved to be extremely useful when
constructing or troubleshooting systems.

1 INTRODUCTION
R&D environments impose specific and particular

demands on test and analysis systems. These systems
have to be flexible, extensible, and easily adaptable to
ever changing requirements. Typically, the emphasis is
put on the flexibility in data taking, user interfaces, and
data processing, with the flexibility in data archival
frequently overlooked. One of the goals of the EMS
project was to build a system with storage architecture
flexible enough to fulfill the following requirements:

• Several test systems in existence connected by a
network or working temporarily as stand-alone
systems

The design of EMS does not restrict the system to
archive only data. Through use of the software bus,
information and control objects of any kind can be routed
to appropriate components for viewing or storage. If one
wants to keep a record of property, debug, exception, or
even control objects, it is possible to direct them to
databases and/or stores of other types.

• Ability to store the system’s state to continue
processing later and to “replay” tests by
streaming data from the storage rather than from
the original data sources

• Capability to store results of ad-hoc configured
systems and to store any intermediate results for
reprocessing, debugging, alternative processing,
and off-line processing

• Ability to sustain a relatively high data rate
• Independence of the archival mechanism from

data processing, characterized by the capability
to add new types of storage (files, databases,
etc.) without modifying the existing solutions

• Ability to access and query final data from
external applications

To accomplish these requirements the Extensible
Measurement System framework [1][2][3] has been used
together with a specially developed data archival solution.

Figure 1: EMS architecture.

†

__

nogiec@fnal.gov

3 EMS ARCHIVAL SYSTEM
EMS, instead of choosing between a relational

repository and an object repository, takes advantage of
both of these representations by creating a hierarchical
archival system (see Fig. 2). The lower level of the
hierarchy comprises an object persistency mechanism
whereas the upper level consists of a relational database.

Figure 2: EMS systems and repositories

3.1 Object Repository
The object persistency mechanism, implemented as an

object-oriented database, resides locally and provides
mainly for programmatic access when reprocessing data,
and storing the system’s state. Since mapping between
persistent data and objects is not required, this is ideal for
programmatic access. Object persistency can focus on
recording the history/trace of the system’s run. Sequences
of event objects created at various stages of the data
processing chain (see Fig. 3) are recorded and can be later
“replayed”. This very general model allows for practically
any object produced by the system to be archived. Since
there are no a priori defined data models, decisions about
what to archive can be made even at run time.

Figure 3: Archiving objects in the object repository.

The solution is general enough to accommodate various
system configurations and objects originated by various

components. In the model, sequences of related objects
coming from a single system are called runs. Each run
contains temporal collections of data, exception, and
debug events. Persisted objects can be accessed
selectively by defining the runs, originating component,
and range of events. This allows for reprocessing to start
from a known point in the data flow.

The object repository offers good performance with
relatively high data saving rates. As shown in Figure 4,
the saving rate depends highly on the size of objects
persisted in a single transaction.

Figure 4: Performance of the object repository.

3.2 Relational Data Repository
Although perfect for a programmatic access, the object

repository is less appealing for human interactions.
Therefore, filtered, synthetic data that are ready for human
interpretation are stored in the second layer of the EMS
archival system, which is implemented as a relational
database. The typical configuration, while having multiple
object repositories, will have just one relational
repository, which will be accessible remotely.

The data model of the relational database reflects
concrete relations between data specific to a particular
application and is foreseen, unlike the object repository,
to change infrequently. Typically, this models the final
results of the R&D process or production-type data.

Archival access to a relational database is provided by a
flexible component using the JDBC standard. This
component executes SQL queries and can provide data
objects containing query results to the system. The query
can be set up via the component’s dedicated property or
supplied in a data event. In the former case, the
component can either load a stream of homogeneous data
into a database using a predefined SQL insert statement or
stream data out of the database using a given query
statement. In the latter case, formal query parameters are
substituted by string representations of the corresponding
data items. Due to this flexible design, the database access
component can perform SQL operations on behalf of
another component as instructed in the received data
event.

Figure 5: Archiving data in the relational repository.

3.3
tional database access works well for
on-line analysis, presentation of the

an

 EMS archival system

ses an object-oriented database (the eXcelon’s PSE Pro
ve

d be replaced by the
re

he relational repository is concerned, various
da

4 SUMMARY
A hierarchical arc en implemented to

st

r view from the
pr

as

bed model of data archival has been
im

6 REFERENCES
[1] http://sdsg.fna

d be replaced by the
re

he relational repository is concerned, various
da

4 SUMMARY
A hierarchical arc en implemented to

st

r view from the
pr

as

bed model of data archival has been
im

6 REFERENCES
[1] http://sdsg.fna

 Web Access
While remote rela

accessing data for
alysis results for the human viewer is best done via the

web. Templates for comprehensive reporting of test
results as well as standardized result/test comparisons can
be easily designed from a variety of existing solutions for
displaying data stored in a relation database. Typical
solutions include frameworks based on JSP and servlets
or EJB. The EMS system will provide WEB access for the
finalized data stored in the PostgreSQL relational
database via JSP and servlets. A downloading capability
for multiple formats of the data (e.g., the Excel file
format) will be provided, as well as detailed reporting.

3.4 Implementation Variants

The current implementation of the
u

rsion of the Object Store database [4]) and a relational
database system (PostgreSQL [5]). PSEPro is a pure Java
database and therefore is as portable of the rest of the
Java-based EMS. Additionally, it requires no
administration assistance at all.

If the performance requirements allow for it, the native
object-oriented repository coul

rements allow for it, the native
object-oriented repository coul

lational database with capabilities to store objects or an
object persistency layer that hides the underlying storage
mechanism and provides a mapping between objects and
the actual storage system artifacts (such as tables). This

mapping could be highly automated. Unfortunately, the
solutions involving a relational database would require
administration efforts and may also limit the portability of
the system.

As far as t

lational database with capabilities to store objects or an
object persistency layer that hides the underlying storage
mechanism and provides a mapping between objects and
the actual storage system artifacts (such as tables). This

mapping could be highly automated. Unfortunately, the
solutions involving a relational database would require
administration efforts and may also limit the portability of
the system.

As far as t

tabase management systems, including open source
ones, could be used interchangeably as long as the
necessary JDBC driver is available.

tabase management systems, including open source
ones, could be used interchangeably as long as the
necessary JDBC driver is available.

hival system has behival system has be
ore data in R&D environments, where flexibility in

defining stored objects as well as data selection and
retrieval by humans are required. The system
encompasses a primary storage implemented as an object
persistency mechanism and a secondary storage
implemented as a relational database.

This solution separates the use

ore data in R&D environments, where flexibility in
defining stored objects as well as data selection and
retrieval by humans are required. The system
encompasses a primary storage implemented as an object
persistency mechanism and a secondary storage
implemented as a relational database.

This solution separates the use
ogrammatic view and allows for data filtering and

reduction. Data taking is very fast due to performance of
the object database and is not limited to performance of
the relational database. No mapping of objects is required
to achieve object persistency, which allows for keeping
some ad-hoc generated results if needed for specific tests.

The presented solution avoids a typical dilemma

ogrammatic view and allows for data filtering and
reduction. Data taking is very fast due to performance of
the object database and is not limited to performance of
the relational database. No mapping of objects is required
to achieve object persistency, which allows for keeping
some ad-hoc generated results if needed for specific tests.

The presented solution avoids a typical dilemma
sociated with choosing between either exclusively

relational or exclusively object model of data, with the
relational approach being inflexible and the object
approach being oriented more toward the programmatic
access.

The descri

sociated with choosing between either exclusively
relational or exclusively object model of data, with the
relational approach being inflexible and the object
approach being oriented more toward the programmatic
access.

The descri
plemented as part of the EMS project and successfully

used at Fermilab’s Magnet Test Facility.
plemented as part of the EMS project and successfully

used at Fermilab’s Magnet Test Facility.

l.gov/emswebl.gov/emsweb
[2] J.M. Nogiec et al, “A Flexible and Configurable

. Nogiec et al, “An XML Driven Framework for

w.exln.com/products/psepro/

System to Test Accelerator Magnets”, PAC’01, Chicago,
2001.
[3] J.M
Test Control and Data Analysis”, ICALEPCS 2001, San
Jose, 2001.
[4] http://ww
[5] http://www.ca.postgresql.org/

http://sdsg.fnal.gov/emsweb
http://www.exln.com/products/psepro/

	HIERARCHICAL DATA ARCHIVAL SYSTEM FOR EMS
	1 INTRODUCTION
	2 OVERVIEW OF EMS
	3 EMS ARCHIVAL SYSTEM
	3.1 Object Repository
	3.2 Relational Data Repository
	3.3 Web Access

	4 SUMMARY
	6 REFERENCES

