
PROGRAM GENERATORS AND CONTROL SYSTEM SOFTWARE
DEVELOPMENT

Klemen Zagar*, Anze Vodovnik**, J. Stefan Institute and Cosylab Limited, Slovenia

Abstract
Development of a control system typically requires that

many software artefacts are kept in sync with one another.
For example, if a hardware device is replaced with a
newer model, which exposes some additional
functionality, this might require changes or additions in
device driver code, in networking protocol, the operator's
user interface, and the configuration database. Such
modifications are often trivial: addition of functions,
graphical user interface elements, and database columns,
all based on established templates. Traditionally, software
engineers would be assigned the task of affecting these
changes, which is error prone – e.g., forgetting to make a
modification in the configuration database – and time
consuming – performing regression tests to check that
nothing has been broken by the widespread modification.
To ameliorate these issues, we propose describing devices
using XML files with a well-defined schema and
generating all the software artefacts from these
descriptions using templates. We have developed a
specialized language called XPGL (Extensible Program
Generator Language) for the purposes of defining the
templates, which is presented in this article.

1 INTRODUCTION
The complexity of a system is measured in the number of
components that it encompasses, as well as the number of
interactions among them. Thus, control systems are fairly
non-trivial, since every piece of hardware that needs to be
controlled requires:

A driver, which allows communication of the control
system with the hardware, and some times also
autonomous real-time control of the hardware.
A graphical user interface (GUI) for the human
operators, through which the hardware can be
monitored and controlled.
A configuration database entry, which describes the
piece of hardware in terms of addressability and
initial configuration.
A networking protocol that allows for the above to
interact.
Some kind of a business logic, which models the
concept of a physical device, defines its behaviour, is
knowledgeable about interactions with other devices,
and is capable of a higher-level control that need not
be real-time.

Although there can be hundreds of devices in a control
system, there are not many types of them. This means that
each and every device must still be manufactured,
installed, and properly configured, but it needs to be

designed only once. Also, the software for the device
needs to be written only once.
The work can be greatly assisted through the use of
program generators, because the code is very repetitive.
The repetitiveness becomes even more obvious when
adhering to the principles of the object-oriented
programming and decoupling code using multi-tier
architecture [1]. Patterns of repetition by themselves
cannot be expressed explicitly in terms of code, but they
can be conveyed in a form of code templates.
Our [2] work was focused towards defining a good code
template definition language, which we call the
Extensible Program Generator Language (XPGL). The
name was coined to emphasize the following:

It is an artificial computer language with a well-
defined syntax.
It is extensible in a sense that new features can be
added to the language easily.
Its primary purpose is generating program source
code.

2 PATTERNS
If there is a pattern in the code, this implies that most of
the code is the same regardless of particular instantiation
of the pattern, and that only a small part of the code is
different on per-instance basis. For example, when writing
a Java [3] class, its fields are typically not exposed
publicly, and accessor/mutator method pairs are provided
instead of them:

class SomeClass {
 private int myVariable;
 public int getMyVariable() {
 return myVariable;
 }
 public void setMyVariable(int value) {
 myVariable = value;
 }
};

(The code in bold are Java keywords, and italics are the
parts of the code that differ from instance to instance.) In
this example, the pattern is clearly visible (the non-italic
text), and the placeholders for volatile code can also be
inferred (the data type, int, and the name of the field,
myVariable).

3 DESCRIBING THE SOFTWARE
Apart from identifying the patterns, one also has to
describe the content – the software that is to be built. In

*klemen.zagar@cosylab.com
**anze.vodovnik@cosylab.com

•

•

•

•

•

•

•

•

the example above, one has to specify that there exists a
class named “some class” and that it contains an integer
variable called “my variable”.
The description of the software has to satisfy several
requirements:

Agnostic of the target programming language. This
will make it possible to use the same description for
producing artefacts in several different programming
languages.
Easy and concise to create. If the complexity for
providing the description exceeded the complexity
for writing the code, use of generators would not be
economical.
Well-defined and unambiguous.
Highly structured and flexible due to the nature of
program code.

3.1 Extensible Markup Language (XML)
We found it beneficial to use the Extensible Markup
Language (XML) standard [4] for describing the
software. The main features of XML are:

The data is stored in comprehensive, human-readable
text files.
XML files can be assigned a schema , which specifies
the exact syntax of XML files. This allows validation
of XML files and reduces the possibility of an error.
High-quality parsers and validators of XML files are
widely available.

The schema of XML files suitable as input to a program
generator depends on the kind of the system that is
described. For example, the XML files for control
systems [6] would be describing devices and their
control/monitor points, whereas files for banking would
focus on types of accounts and their specific attributes.

3.2 Assuring Programming Language Neutrality
If there is only one target programming language, then the
tokens appearing in the XML program description can be
treated verbatim and simply inserted at the placeholders.
The most frequent points of difference between
programming languages, as far as placeholder
representations are concerned, are:

Primitive data types: int in C, C++ and Java is
called xs:int in XML schema definition language
(XSD) and Integer in Pascal.
Naming convention: in some languages, camel-case
is frequently used (myVariable), whereas in others
all words are capitalized (MyVariable). The
naming convention also depends on context, for
example in Java, the myVariable field would be
accessed through function getMyVariable.

To circumvent these issues, we recommend:
Always use Java types in the XML description.
Convert to language-specific types in the templates.

Use proper capitalization of words in naming tokens,
and separate words with either underscores or spaces.
When inserting placeholders in templates, take care
of proper capitalization, which takes the context into
account.

4 THE TEMPLATE
When the pattern is identified, it must be somehow
expressed as a template understandable by the program
generator.

4.1 Extensible Stylesheet Language Transforms
Many tools and standards exist that add further value to
XML. One of them is the XSL/T, which allows
transformation of XML documents to other forms, such as
other XML documents, HTML documents, or text files.
Syntactically, XSL/T files themselves conform to the
XML standard.
In particular, XSL/T can be used for describing templates
that produce program code. We used this approach with
great success for generation of user-interface integration
classes (Abeans plugs, [7]) from XML-based descriptions
of the devices.
However, it was a pain to change and debug XSL/T
templates and the generated code, therefore we have
decided to write a dedicated generator, which is optimized
for generating source code and not just any text.

4.2 Extensible Program Generator Language
We have developed XPGL [8] because XSL/T is
somewhat clumsy to work with. Most of this clumsiness
stems from the fact that XSL/T is actually XML, which is
by nature very strict, and that consequently makes XSL/T
templates difficult to read, write and maintain.
Also, some XSL/T constructs that are otherwise
infrequently used, become very common with program
generators. These constructs are then very cumbersome to
type over and over again.
Finally, XSL/T does not have some features expected
from a program generator, such as an ability to preserve
the code that the user has modified manually.
The design of XPGL strived towards the following goals:

Use as much of XSL/T and XML standards as
possible to leverage existing technologies, tools and
knowledge.
Make frequently used constructs more compact and
more readable.
Pay special attention to indentation. The indentation
of the generated source code should be visually very
similar to indentation of the template. Also, it should
be possible to generate source code comments that
are visually appealing.

•

•

•

•
•

•

•

•

•

•

•

•

•

•

There should be support for retaining the
modification the user had made manually to the
generated source.

To avoid going into too much details regarding the XPGL,
the reader is invited to take a look at the example (section
6 below) and the XPGL specification [8].

5 THE PROGRAM GENERATOR
If XSL/T is used as the language for the templates, the
program generators are XSL/T transformation tools,
which are readily available (for example, Xalan [9]).
However, for XPGL templates, we had to develop a
special transformation tool, which we call ProgGen.
ProgGen is written in Java, and thus portable to most
platforms. It was designed with maintainability and
extensibility in mind. Thus, adding new building blocks
to XPGL does not influence the rest of ProgGen.

6 AN XPGL EXAMPLE
As an example, let’s take a look at how the template for
accessor/mutator method pairs shown above looks like in

XPGL (Figure 1). If the template was applied using the
following XML:

<?xml version="1.0"?>
<class name=”some_class”>
 <field type=”int” name=”my_variable”/>
</class>

the program generator’s output would exactly match the
definition of class above. Adding an additional field is as
simple as adding another <field> element to the XML:
worrying about supplying the accessor and mutator is
program generator’s job.

7 CONCLUSION
Currently, XPGL language is fully specified, and
ProgGen implements most of it. We are in the process of
replacing our existing XSL/T code generation
transformations with XPGL ones, especially due to their
greater maintainability.

8 REFERENCES
[1] M. Plesko et al., “ACS – the Advanced Control

System”, PCaPAC 2002, Frascati, Oct 2002
[2] Cosylab Ltd., http://www.cosylab.com
[3] Sun Microsystems, The Java Programming

Language, http://java.sun.com
[4] The World Wide Web Consortium, “Extensible

Markup Language (XML) 1.0 (Second Edition)”,
October 2000, http://www.w3.org/XML

[5] The World Wide Web Consortium, “XML Path
Language (XPath), Version 1.0”, November 1999,
http://www.w3.org/TR/xpath

[6] K. Zagar et al., “The Control System Modelling
Language”, ICALEPCS 2002, San Jose, CA, Nov.
2001

[7] G. Tkacik et al, “Java Beans of Accelerator Devices
for Rapid Application Development”, PCaPAC99
workshop, KEK, Tskukuba, January 1999

[8] Cosylab Ltd., “Extensible Program Generator
Language”, http://xpgl.cosylab.com/

[9] Apache, “Xalan XSL/T Transformation Library”,
http://xml.apache.org/

<?xpgl version="1.0"?>
class <”xpgl:naming('UU', /class/@name)”> {
 <for-each "/class/field">
 private <”@type”> <”xpgl:naming('LU', @name)”>;
 public <”@type”> get<”xpgl:naming('UU', @name)”>() {
 return <”xpgl:naming('LU', @name)”>;
 }
 public void set<”xpgl:naming('UU', @name)”>(<”@type”> value) {
 <”xpgl:naming('LU', @name)”> = value;
 }
 </for-each>
};

Figure 1: XPGL template for generating Java accessor and mutator methods with the associated private field that actually stores
the value. XPGL tags are in bold. The values in quotes are XPath expressions [5]. The function xpgl:naming takes care of
appropriate capitalization of a name (e.g., UU – first word upper, other words upper – produces MyVariable, whereas LU
returns myVariable). The for-each XPGL tag instantiates its contents for every sub-element field of root element
class in the input XML.

Model of the Control System (XML)

CORBA Server C++
Template (XPGL)

GUI Plug Java Template
(XPGL)

Configuration Database
XSD Schema Template

(XSL)

Program Generator (XPGL ProgGen, XSL/T Transformer)

Configuration Database
Schema (XSD)

CORBA Server (C++)GUI Plug (Java)

Figure 2: Illustration of the program generation process.
Given the description of the software (e.g., the model of the
control system) and the templates, the program generator
produces the software artefacts (e.g., source files that are then
subjected to compilation).

•

