
EXPERIENCE WITH ACTIVEX CONTROL FOR SIMPLE CHANNEL ACCESS

C. Timossi, H. Nishimura, J. McDonald, Lawrence Berkeley National Laboratory, USA

Abstract*
Accelerator control system applications at Berkeley

Lab’s Advanced Light Source (ALS) are typically
deployed on operator consoles running Microsoft
Windows 2000 and utilizing EPICS[1] channel access for
data access. In an effort to accommodate the wide variety
of Windows based development tools and developers with
little experience in the nuances of EPICS client
programming, ActiveX controls have been deployed on
the operator stations to both aid the development effort
and to standardize the programming interface to the
control system. Use of ActiveX controls in the accelerator
control environment has been presented in a previous
report[2]. Here we report on some of our experiences with
the use and development of these controls.

1 CONTROL SYSTEM ENVIRONMENT
The ALS control room layout includes twelve MS

Windows based operator stations running dozens of
applications developed over the ten-year life of the
accelerator. These applications are in process of being
updated to use channel access, the network based protocol
used by EPICS. The developers range widely in their
experience with programming and programming tools.
The developers range from operators to physicists to
control system personnel. Currently, National
Instrument’s Labview, Microsoft Visual C and Visual
Basic, and Borland’s Delphi and C++ Builder are the
most popular development platforms but there is no clear
mandate.

Our previous mechanism for supporting data access
from these different tools was to build a C language based
Dynamic Link Library (DLL) that is also a standard
method of access for the Windows OS. This method,
however, required us to understand each development
tool’s requirements for accessing C language function
calls and maintaining this extra layer of code.

Several ActiveX controls were developed. One of these
controls is used to implement a programming interface
(API) that is a subset of the EPICS client API called
Simple Channel Access†. Other controls are higher level
and present a simplified interface for direct control of
device hiding the EPICS model completely.

2 SIMPLE CHANNEL ACCESS (SCA)
The EPICS channel access API was designed to

implement a high performance network protocol

* This work was supported by the Director, Office of Science, Office of
Basic Energy Sciences, U.S. Department of Energy under Contract No.
DE-AC03-76SF00098

† Thanks to Loren Shalz, LBNL who developed SCA.

including such features as data and connection call-backs,
event notifications and smart aggregation of data requests.
For the more casual programmer, accustomed to simple
synchronous subroutine calls to get data, the CA API can
be difficult to fathom. We’ve attempted to provide a
scaled-down interface for the more casual programmer by
providing a subset of features in a library called Simple
Channel Access. This interface attempts to preserve the
‘grouping’ of data calls when appropriate while trying to
present the programmer with a simple set of synchronous
function calls.

Experience at the ALS shows that applications tend to
fall into two categories. First there are applications
(typically GUIs) that attempt to display large amounts
(hundreds) of data items on a screen as status information.
For these applications there is little concern for update
rates of more than a few times per second. The order of
arrival of the values is not important. For these
applications it’s most efficient to group as many requests
for data as possible into one network request and then to
poll every so often for new data. The second type of
application performs active control at, perhaps, a much
higher rate (10’s of milliseconds). An example might be
an application that pulses a corrector magnet and observes
the response of a thermocouple. For this type of
application it’s important that the new value for the
magnet is sent before the thermocouple value is read;
grouping the two data requests into one network request is
not appropriate. Unfortunately, we found it difficult to
handle these types of applications transparently so it’s left
to the programmer to decide whether or not to group
requests.

3 HIGHER LEVEL OBJECTS
While simple, the SCA interface is very low level.

Access to data depends on knowing the unique process
variable name for the item of interest. For a complex
accelerator device at the ALS, such as an insertion device
(either a wiggler or undulator), control may involve
looking up dozens of process variable names and
understanding how each relates to the control of the
device. For such devices it sometimes makes sense to
hide channel access completely and to implement an
ActiveX control that exposes methods for the most
common operations of the device. This encapsulation of
the device’s behaviour makes it much easier for the
application developer, who may be expert in the operation
of the device but cares little for the communication
details, to concentrate on the design of an operator
friendly control application. More importantly, this
encapsulation means that subsequent application
developers don’t have to re-learn the relationship between

a bewildering number of process variable names and the
behaviour of the device.

Developing these higher-level controls is time
consuming. There is some extra programming required
but the main effort involved is researching the device in
question so as to be able to design a sensible interface.
This extra effort is not always warranted; particularly in
cases where the control requirements are not clearly
understood requiring many iterations of the interface.

The insertion devices at the ALS are examples of
devices where encapsulation seemed to make sense.
These devices have many control variables and several
modes of operation. As new insertion devices came on
line, extending the existing control application was a
constant annoyance; every addition required re-learning
the logic of a monolithic application. An ActiveX control
was developed and tested in concert with the new
application development. This approach allowed for a
division of labour between the GUI application
programming and the control logic and also made the
control of the device more accessible to future
applications.

4 ACTIVEX RATIONAL
For Microsoft Windows based systems, the ActiveX

control has a number of advantages. There are well-
developed tools to build them; at the ALS we use MS
Visual C++. They are registered with the OS. This
registration tells a client application, in a standardized
manner, where they are and what features they have and
which makes late binding possible. A good example of
late binding is seen in the Labview development
environment. Once an ActiveX object is selected from a
list of registered controls, the developer has only to right-
click on a method to see a list of all the supported
methods. Once a method is chosen, the types of all the
arguments are also displayed. We are also able to use the
MS Visual Installer to create installer programs that take
care of the details of both registration and copying the
files into the appropriate place in the file system. As
important is the ability to uninstall a control using the
standard Windows facility for adding and removing
programs.

There can be performance issues using ActiveX
controls. The ActiveX model was designed to make calls
across process and/or machine boundaries. Therefore
calling a control’s method, which may involve argument
marshalling, will take more time than the equivalent
library function call. We haven’t attempted to measure
this delay. As a reference point, the fastest access we’ve
attempted has been for a calibration application deployed
as a Labview application running on a PC that sets a DAC
and then reads back an ADC from an EPICS-based server
(IOC) deployed on a embedded processor. In this case the
access rate was purposely limited to 20 milliseconds per
request to ensure enough time for the server hardware and
software to respond, but this example gives a rough idea
of what’s possible.

Of course, an ActiveX control is not installable on other
operating systems. However, the C++ code used in the
implementation of the control is quite portable with the
man problem being the need to re-define some of the
manifest constants defined for ActiveX error codes.

ActiveX has now been subsumed by Microsoft .NET
which defines a new object model. This new model
makes ActiveX somewhat obsolete. However, an ActiveX
control can still be used directly in the .NET environment
(including it’s late binding features). We have verified,
for instance, that a control can be used in a .NET
application developed in the C# language.

5 REFERENCES
[1] L.R. Dalesio, et al., “The Experimental Physics and

Industrial Control System Architecture”, ICALEPCS
’93, Berlin, Germany, 1993.

 [2] C. Timossi, H. Nishimura, “Accelerator Control
Software Construction Based on Software Object
Components,” PAC’97, Vancouver B.C., Canada, May
1997.
 [3] J. McDonald, H. Nishimura, C. Timossi, “Cross
Platform Development Using Delphi and Kylix”, this
conference.

