
HOW TO SURVIVE THE UPGRADE TREADMILL

Kirsten Hinsch, Ursula Lauströer, Rüdiger Schmitz, Winfried Schütte - DESY Hamburg, Germany

Abstract
Here at DESY we have nine large particle accelerators

and correspondingly a large and complex control system.
It consists of subsystems of many generations of hard and
software. Until recently we even had to support Norsk
Data mini computers so called NORDs. The number of
applications is considerably more than a thousand. The
control team consists of a dozen people aged typically in
the fifties. This large, diverse and understaffed system in-
troduces a considerable amount of (healthy) inertia. On
the other hand we have a fast hard- and software upgrade
cycle in the general computing scene. There is every few
years a major operating system upgrade. This conflict
produces tension and stimulation.

1 INTRODUCTION
Everybody who works a few years in our field physical-

ly feels the technology driven upgrade pressure. The use-
ful lifetime of control system hardware and software is
just too short. We want to improve the quality of our ser-
vice for the operations crew, the machine physicists, the
accelerator hardware specialists, the accelerator custo-
mers and more than often find ourselves just upgrading.

So lets take a closer look what drives us:

2 THE DRIVING FORCES
One of our PC dealers claims any part as old as six

weeks is antique. The hardware is continuously changing.
It is nice to have for a while the same main board, the
same graphics card, the same Ethernet card. In this para-
dise the software can use the same driver and you can
keep your zoo of systems in synchronization.

Even worse are technological changes of the hardware
like the introduction of USB. Native USB support requi-
res a recent operating system. On the other hand we again
and again depend on things like a frame grabber PC card
that has only drivers for 16 bit Windows.

Microsoft makes a major operating system change
every other year. And a change that one can not ignore
(16 bit vbx to 32 bit COM component to .Net)
roughly every six years. The window of software usability
is definitely shorter than the lifetime of any of our accele-
rators. Our hard and software assets turn within five years
to liabilities: obligations to upgrade

Changes between hardware and software are interrela-
ted. They form a complex fabric. Both constitute the core
of the continuously moving treadmill: our current plat-
forms.

Things get even worse: the administration with all its
system support is also platform dependent. Next our ap-
plications and components used to run our control system
depend again on each platform. We are most vibrantly
trapped.

Lets look a little closer on the impact of changes in
each part of our environment.

3 IMPACT OF CHANGES

3.1 Changes in the accelerator
This is a true place of peace and tranquility. Of course a

new accelerator needs a new control system. A closed one
does not need one anymore. Still a major change in the
accelerator does not necessary have any imp act on the
technologies used. It is just a good and most welcome op-
portunity to change things now.

3.2 Network
Network upgrades have moderate impact on the other

areas (fair degree of orthogonality). The major problem
we have now is CISCOs mediocre IPX support. We ex-
pect this to get worse.

3.3 Computer and Associated Hardware
This is one of the two major driving forces.
At the upgrade from the NORD we could not keep the

operating system family. Everything had to be written
new. Very important: the concepts, architectures and de-
signs could be kept. Both the users of the NORDs and the
hardware controlled by the NORDs did not change after
all.

The impact on the “little” hardware stuff like boards,
plug in cards, busses is what tends to drive truly crazy. It
puts pressure on the administration, maintenance and
software systems.

3.4 Operating System
Major upgrades in the operating system require a

change in the development environment. In the case of
upgrading from Sintran, the NORD operating system, we
had to switch to an entire new language.

3.5 Development Environment and
Programming Language

Changes within the same programming language are
usually relatively easy. A change within VB1 to 3 just re-
quired an expert assisted recompile and usually no chan-
ges to the source code at all. Both versions could even run
side by side on the same operating system without any
problems. The change from 16 to 32 bit Visual Basic is a
bit more involved but at least an upgrade wizard assists
(see chapter 5 for a concrete example).

On the other hand a complete change of the program-
ming language with its associated standard libraries
would require a quite lengthy training period, complete
rewrite of the software and a rather long testing phase to
actually achieve accelerator grade quality. In our case

JAVA has a lot of interesting properties that Visual Basic
does not have. Especially its platform ubiquity. On the
other hand the power of Java is comparable to VB.Net,
which has a wizard supported standard upgrade path. A
lot of effort and time can here be saved with respect to
learning, writing and testing. The good new features can
than be introduced in an adiabatic way leading to a hope-
fully high gain with only little disruptions. Also there is a
good chance that .Net will be faster spread over other
platforms [1] then we are able to “side grade” to Java

3.6 Distributed System Support and Special
Purpose Graphics

Up until roughly now control systems needed/used spe-
cial components for communication across computers and
for the efficient display of our data (plots, histograms,…)
Usually this is done by one or two C experts. An upgrade
should involve only work on their part. All the applica-
tions programmers are concerned of is the case of inter-
face changes and even more philosophy changes of these
services. In the future the establishment of a few industry
standard ways of supporting distributed computing (like
web services) will inevitably result in those deep conse-
quences.

3.7 Architecture and Design
The ideas how to write a control system kept very con-

stant over the decades. This lead to pretty much the same
architecture and design. Any change herein would not on-
ly change the code, but also the way people thing about
the control system.

We expect minor changes in the architecture due to the
increasing necessity of new client platform support (SMS,
Web Interface, Palms, embedded devices or whatever).
Also a GAN (global accelerator network) [2] requires
some mo difications.

3.8 Demography
During the next ten years most of us will retire. New

capable personnel are usually young and will only work
with reasonable recent technologies.

4 A STRONGLY SIMPLIFIED OVERVIEW
OF OUR UPGRADE SCENARIO

For a general feeling of the size of the upgrade problem
we face you find in Appendix A a list of the computers we
purchased during the last years. You see a strong increase
in numbers. Anyhow you should also consider that not all
Pentium IIs are equal (different boards, cards,…).

On the software side we had roughly 232 NORD pro-
grams (10-20kB each) and have now 583 windows pro-
grams running (DORIS 141, LINAC 2/DESY 2 173,
LINAC 3/DESY 3 115, PETRA 109, System 45) and
more programs on HERA.

You can find a synopsis of “A strongly simplified over-
view of our upgrade scenario” in the Appendix B.

5 A CONCRETE EXAMPLE
e are still in the multi year process of transferring large

parts of the control system from Windows 3.11 with
Visual Basic 3.0 applications to Visual Basic 6.0 SP3 on
Windows NT 4.0. Yes, we do know NT 4.0 is not suppor-
ted by Microsoft anymore. So lets look at the tasks in
closer detail:

5.1 Provision of the New Software Environment
?? All developers get PCs with NT4.0 and VB 6.0.
?? Server and client PCs are doubled or can be dual

booted in both systems.
?? All self made system tools are supplied for the

new environment. All further developments on
them will be done for both types now.

5.2 Preparation of the Applications
?? Try to set all properties of self made tools at run

and not design time. Those properties will not be
upgraded.

?? Try to use only original Microsoft Visual Basic
Extensions. Sheridan 3D tools for example were
supplied by Microsoft, but have problems during
upgrade with non integral font sizes.

?? Copy all utility forms and modules in the appropri-
ate new folders.

?? All files of your VB project have to be stored in
text and not in binary format.

?? All project files are writeable.

5.3 The Actual Upgrade
Load the project into VB6.0 and let the upgrade wizard

do its work. With a lot of luck everything is fine now.
?? The larger the number of self made, third party etc

visual basic extensions (vbx) one uses, the more
picture boxes one has.

?? Load the corresponding new COM components
(dll, ocx, …) into the project.

?? Replace the dummy picture boxes with the corre-
sponding new graphical components. Use the same
name. If you managed to keep the interfaces con-
stant, you can reuse your code completely (proper-
ties, methods, event routines).

5.4 Tidying it up
?? Adopt to the interface changes.
?? Make some of the design and architecture changes

you always wanted to make. Like generalizing the
application to more than one accelerator.

?? Incorporate the new tool of the day.
?? Test, test, test, don’t stop too early, test, test, …

5.5 Findings
?? Practice is necessary and helps to gain efficiency
?? There is an upgrade wizard for the core language

transformation. The bulk of the work has to be
done by an actual person.

6 PRINCIPLES
In this section we will present some helpful principles

to deal with those situations.

6.1 A Story of Nomads
We are like nomads and have to move within a quickly

changing world. So we have to act like nomads:
?? Use as little as possible and as much as necessary.
?? Keep it as simple as possible but not simpler.
?? Keep things stable as long as sensibly possible.

6.2 Three Strategies
6.2.1 Master of the Environment
Keep things stable over the estimated lifetime of the

accelerator (let us say ten years). Here we buy enough
parts and spare parts and licenses to keep us going for a
decade. We truly leave the treadmill.

6.2.2 Efficient Mover
We try to keep the supported upgrade versions to at

most three ones. A single mainstream environment, the
always present left behind one and one future
environment. No other - especially no competing ones -
are kept.

6.2.3 Anarchic Management
Give up on managing the environments and jump from

problem to problem. Some people call it paradise other
nightmare. Here everybody has a lot of freedom. The
relative size of the upgrade management problem gets
reduced by introducing an even bigger problem.

6.3 A Statement of Truth
Upgradability is a quality attribute of the (control)

system and a quality attribute of the corresponding
management. In this respect upgradability is not distinct
from other quality attributes like maintainability,
reliability, security, … [3].

7 CONCLUSION
Good luck.

8 REFERENCES
[1] There are at least three projects porting DotNet to

non windows platforms:
http://www.go-mono.com/ (Ximian),
http://www.oreillynet.com/pub/a/dotnet/2002/03/27/archt
our.html (by Corel for Microsoft),
http://www.southern-storm.com.au/ (BSDGNU)

[2] For example: Albrecht Wagner in
http://www.cerncourier.com/main/article/42/6/22 and
http://www.cerncourier.com/main/article/40/5/15/1

[3] Any good book on systems, software architecture or
technical management. We recommend: Len Bass et al
“Software Architecture in Practice”, Addison-Wesley
1997

APPENDIX A: NUMBERS AND TYPES OF
NEWLY ACQUIRED COMPUTERS

Just to give you an impression of the floods and tides of
incoming computers. Here are our numbers of the past
few decades:

Year Number Type
1973
1974

3 PDP

1975 7 NORD 10
1976
1977
1978
1979
1980 ca. 10 NORD 100
1981
1982
1983
1984
1985
1986 16 NORD 110
1987
1988
1989
1990 60 + 6 NORD 120 + 5000
1991 ca. 80 + 5 I386 + I486
1992
1993 ca. 62 + 10 I486 + Pentium
1994
1995
1996

ca. 67 Pentium

1997 132 Pentium
1998 108 Pentium
1999 50 P II
2000 63 + 35 P II + P III
2001 57 P III
2002 35 P III

APPENDIX B: A STRONGLY SIMPLIFIED OVERVIEW OF OUR UPGRADE SCENARIO

Era Mini Computer 16 Bit OS 32 Bit OS Possible Future

Network Pocal on top of
laboratory made
network on top of
XNS pre Ethernet
standard

IPX
IP

Novell Router

Cisco Catalyst

switched network

 At least 100MB
Ethernet
everywhere

Computer

(and Associated
Hardware)

Norsk Data Mini
Computer

PC:
386
486
Pentium
Pentium II

PC:
Pentium II
Pentium III
Pentium IV

 PCs

Workstations
embedded devices
Browser

Operating
Systems

Sintran DOS
Windows 3.1
Windows 3.11

Windows NT 4.0
Linux

 Windows XP
Windows CE
Linux, …

Visual Basic 3

Some C (system
development)
Visual Basic 6

Visual Basic 6

Some C
(system develop-
ment)

Development
Environment,
Programming
Language

Pocal Interpreter

File locations could be kept

 Java 4
J2EE
CORBA
Components
VB.Net
…, ???

Distributed Sys-
tem Support
and Special Pur-
pose Graphics

Laboratory made
task and listen,
plots, histograms
and design editor

Laboratory made
visual basic
extensions (vbx)

Laboratory made
COM components
(ocx)

 Less self made stuff
in favor of industry
standards
(see entries above)

Pre emptive
multitasking

Co operative
multitasking

Pre emptive
multitasking

any tasking
multithreading

Architecture and
Design

Client/Server
Equipment Functions

Click on Screen
Event driven

Multi tier:
Many Views
Many field busses
Published Services

GAN enabled

