
ACOP AS A JAVA BEAN

Philip Duval and Honggong Wu, DESY MST, Hamburg, Germany

Abstract
The ACOP[1] (Accelerator Component Oriented

Programming) ActiveX control has been extensively
used in control applications not only at the DESY
accelerators but at many other laboratories as well. A
new ACOP Java Bean reusable component has recently
been developed and tested. This new component keeps
same user interfaces as the ActiveX control. As in the
latter case, it offers plugs for different data exchange
protocols, such as TINE[2] and Channel Access. Its
graphic package was also adopted from ActiveX
control, offering the same features fine-tuned for
accelerator application development. The ACOP Java
Bean can be used in a very similar fashion in a Visual
Java environment just as the case for ActiveX in Visual
Basic. Detailed development issues as well as a
common user interface will be presented. In particular,
we shall present benchmark results concerning ActiveX
and Java Bean performance as well as ease of
development.

1 INTRODUCTION
Since its release in 1997, the ACOP ActiveX

component [1] has been shown to be a very useful
client side control tool for writing application programs
using WIN32 systems. The last upgraded version 2,
released in 2001, included numerous new features, both
for device access and data rendering. Given the
popularity of Java natural follow-up to the ActiveX
control would be an ACOP Java bean, offering the
same capabilities and functionality. The initial release
indeed provides the same device rendition and access
capabilities as in the ActiveX control, and offers plugs
for data transport, also in a similar manner. It has been
tested using the TINE Access protocol for device
access, and can in any case use a “Simulator” plug.
Data transport “plugs” are incorporated via an interface
plug class. In this paper we will emphasize the
differences between implementing the ACOP Java bean
and the ACOP ActiveX component, as well as several
new futures (already included in the ACOP ActiveX
release 2).

2 ACOP BEAN

2.1 Parameter passing in Methods

In the ACOP ActiveX control data and parameters are
passed as OLE Variants, where the infrequently used
parameters are all optional. Also note that as user-

defined data types are not OLE type an additional data
type parameter is needed for such cases. In the Java
bean, however, data objects are simply passed as
objects, obviating the need for a “data type” parameter.
The passing of infrequently used “optional” parameters
is then realized via method over-loading.

2.2 Device Access Interface

The principal data access methods, Execute(),
OpenLink(), AttachLink(), GetData(), CloseLink(),
GetLastDataSize(), SetReceiveQueueDepth(), are
maintained with similar functionality as in the ACOP
ActiveX. Differences in parameter passing follow the
discussion in section 2.1. ACOP data access properties
such as Status and Timestamp are likewise provided,
with one difference being that the Timestamp property
in the ACOP bean is a Java Date Object in the case of
the bean. In addition, information querying as to
available device properties from the underlying system
are also provided. The latter refer to improvements
found in Release 2.0 of the ACOP ActiveX control,
not mentioned in [1], allowing hierarchical querying.
These include:

• DeviceContext. String property used to define the
accelerator facilities.

• DeviceGroup. String property typically used to
define Device Servers.

• DeviceName. String property typically used to
identify specific device instances.

• DeviceProperty. String property targeting a
specific functionality of a device server.

2.3 Device Rendition Interface

 The ACOP Java Bean provides the same sort of
charting functionality and features as the ActiveX
control, and with the same preference for displaying
data in a control system context (such as plotting data
versus timestamp, tagging of histogram elements,
accepting device labels directly on the chart label, to
name a few). The helper functions such as
ReferenceFunction(), WeightFunction(), FFT(),
GetDrawnData(), etc. are also fully supported in the
bean. As a good many of the current ACOP features
and functionality was introduced in Release 2.0 of the
ActiveX control, we will enumerate some of them
below:

• Error window. Sets a window size where out-of-
bounds data will be plotted with an ERROR color.

• ReferenceFunction. Stores a reference function
whereby subsequent draw method calls will show
the difference of the drawing function and the
reference function. Trivial shifting of the entire
drawn array can as before be achieved through the
YShift property.

• WeightFunction. Stores a weight function whereby
drawn arrays are weighted (multiplied) by those
values in the weight function. Trivial scaling of
the entire drawn array can as before be achieved
through the YScale property.

• Cursor Marker. Can be displayed, locked or moved
with the plot.

• Fitting functions. Several commonly used fitting
functions are provided, such as straight line,
exponential.

• RefereshScreen. Used for updating a fraction of the
plot.

• AppendScreen. Adding new data to the plot,
especially for plotting newly retrieved data with
timestamps.

• Leading Edge Marker. Indicates the position of
appended data points.

• AcopConfig. A string property used to save and
restore user predefined settings, which is similar as
template setting.

2.4 Event firing

 Similar to the case of ACOP ActiveX, two types of
events are implemented, mouse and data events. The
parameter passing, during event firing is different for
ActiveX and Java due to the inherent differences in
event passing in ActiveX and Java. In the latter case,
all relevant data are captured inside the passed instance
parameter of the ACOP event class, and thus in the
AcopEventListner() the application should use
getMethods() to retrieve the event data.

3 PROTOCOL PLUGS
In the case of the ActiveX control, the ACOP-

compliant Dynamic Link Library (DLL), is used to
interface the ACOP ActiveX control to the
implementation specific device access calls. The
introduction of data transport plugs in the case of the
Java bean must of course take on a different form, as
DLLs are not a feature of Java. In the Java
environment, an abstract transport class replaces the
DLL, to serve different data exchange protocols.

 The initial release of the ACOP bean includes a
simulation class for producing random data and which
serves as an example as to what must be done to

incorporate implementation-specific plugs into ACOP.
The plug for the TINE transport class is also provided
as a further example for data transport for an existing
protocol. Of course the Abstract transport class should
always be implemented to overwrite the required data
transport methods.

The case of user-defined data types is however not
completely handled by simply passing data parameters
as Java objects. This is due to the data access and
display methods which, when passed a non-primitive
data type, require a way of determining the location and
types of the elements contained inside the user defined
type. Here one should implement the getUserData()
method, which is also included in the Abstract transport
class.

Fig 1. A simple running test application, with
ACOP Java bean, plotting HERA proton orbit of one
monitor using Eclipse Java developing environment

CONCLUSION
 As a point of comparison we have made several

simple benchmark tests regarding the ActiveX control
and the Java bean. One would expect the Java bean to
be slower than the native compiled ActiveX control,
and it is. Rapid display of 1024 double values was
possible at 100 Hz in the ActiveX control, whereas 60
Hz was achieved with the Java bean. This is most
probably due to the garbage collection mechanism,
taking place at inopportune times. In both cases,
ActiveX and Java bean, there was no appreciable
overhead regarding data access.

 The ACOP Java bean is written with native JDK
1.4, and can be used in any Java developing
environment.

In the Visual Java environment the ACOP Java
bean is used as a simple control, one can drop it onto a
frame or panel; visually manipulate it with its property
page at design time. As a bean it can also be sub-
classed in other Java controls. This is illustrated in the
example below.

Fig. 2 Visual Café design environment using
ACOP Java bean

 The current release of the ACOP Java bean (at the
time of this writing, a beta version) can be found at the
ACOP web site: http://desyntwww.desy.de/acop .

REFERENCES
[1] I. Deloose, P. Duval, H. Wu, “The Use of ACOP

Tools in Writing Control System Software”,
Proceeding ICALEPS’97, 1997.

[2] Philip Duval, The TINE Control System Protocol:
Status Report, Proceedings PCaPAC 2000, 2000.

