
OBJECT EXPLORER - A PLUGGABLE GENERIC TESTING AND
DIAGNOSTIC TOOL

M. Kadunc*, I. Križnar, M. Pleško, M. Šekoranja, G. Tkačik, I. Verstovšek
J. Stefan Institute and Cosylab Ltd., Slovenia

Abstract
Object Explorer is a generic application that discovers

at run time all devices, properties or channels that can be
controlled, analyses them using CORBA and Java™
introspection tools and displays methods, fields,
commands and other actions in a GUI. The user can select
and invoke these actions, including entering arbitrary
parameters. The application was first developed by the
KGB group at JSI [1] for testing and debugging the
ANKA control system. A completely new version has
now been developed by Cosylab [2] for the ACS control
system software and the Abeans API. The application is
divided into two parts: The engine part is control system-
specific and communicates with the underlying data or
server layer, providing data for the GUI part and passing
user requests to the control system. This layer is relatively
thin and can easily be implemented for many server
protocols such as TINE, EPICS etc. The GUI part is
independent of the engine implementation and of the
communication protocol used. It receives data from the
engine and shows all the available information to the user.
This article describes the functionality of the Object
Explorer, some of the software designs used, and
discusses some ideas which might be implemented in
future releases of the application.

1 INTRODUCTION
When we were developing the control system for the

ANKA accelerator[3,4], we needed a client tool to test
our device servers. CORBA, which was used for
communication, provided two useful generic services[5]:

• Interface Repository, a service that provides
information about the objects that can be accessed
on a certain network.

• DII (Dynamic Invocation Interface), a service that
offers a generic way of manipulating objects, i.e.
invoking methods and retrieving fields.

Using these principles we were able to create Object

Explorer, an application that provides run-time
information about a control system. It discovers device
servers, displays lists of devices in a GUI and allows user
to read the data on the devices, invoke all control system
commands and create monitors. The application served its
purpose well and almost all of the servers’ functionality
was tested with this tool. As we started to work on
ACS[6], a new control system developed for the ALMA
project in collaboration with ESO[7], we decided to
rewrite the application. The old one was too tightly

connected to the structure of the ANKA control system,
to the implementation of CORBA used there, and was
written in Java 1.1, which was long outdated. Modifying
the existing application would take a lot of effort and little
results, as we would have to do it again for our next
project. The new application is flexible enough that
enabling it for new control systems takes very little
programming effort. It is also very generic so that it does
not need to be modified for each change of the objects’
hierarchy or their declaration. The ACS is now in the final
development phase and Object Explorer has been the
primary tool used for testing and debugging the control
system.

Figure 1: The main application window

2 WALKTROUGH
The user starts with selecting the system: the Object

Explorer either connects to the ACS, communicating with
MACI (Management and access control interface)
supervisor service called Manager, or connects to the
Abeans framework [8] as an ordinary Abeans application.
The structure of the control system is displayed in a tree
component (Figure 1/1). The system is first queried for
the root containers, and as the user expands nodes in the
tree, more queries are made to retrieve other containers
and finally the control system objects. User can connect
to these objects to get a list of all their supported members
– operations (Figure 1/2) and attributes (Figure 1/3). The
user can invoke operations, parameters that they need are
entered into parameter entry fields that show in a dialog
(Figure 3). User can enter primitive types such as
numbers or strings and construct simple objects. If an
operation is synchronous, the result is immediately
printed into a text area at the bottom of the screen (Figure
1/5); otherwise a node (request node) is added to the tree
as a child of the inspected object, specifying that an __

*miha.kadunc@cosylab.com

operation on the object is waiting for a response. The
node itself is an active object that can have its operations
or attributes. Responses from asynchronous requests can
be printed to the same text area, or displayed in separate
windows, called Remote Response Windows (Figure 2).
Each request has its own window where responses are
displayed to the user. Optionally, the numeric values that
are parts of a response are plotted in a trend chart.
Response nodes’ members are also displayed in a list and
can be invoked from the window.

Figure 2: Remote response window displaying a trend
chart

3 ARCHITECTURE
The Object Explorer was developed at the beginning of

the ACS development and we had enough time to design
the architecture of the application well and implement the
application in a generic way, using all possible standards
and services provided by Java™ and CORBA. We
decided to separate the application into two parts –
application GUI and device server access part (called the
engine), and that we would connect these two parts as
loosely as possible, thus making the implementations
clearer, easier to maintain and extend.

3.1 Application GUI
The GUI part handles all the visual aspects of the
application, as well as the lifecycles of the engine and
other objects. It assumes that data are retrieved from
remote servers and is optimized for remote
communication – the data are only requested when a tree
node is expanded, rather than loading the whole structure
at start-up. Remote operations, such as method
invocations, structure queries, etc. are run in separate
threads, keeping the application responsive while the user
is waiting for callbacks and making it more stable in case
of communication errors and other exceptions. The
application GUI is designed for expert users who know
their control system well and understand every aspect of
its functionality. It does not try to be user-friendly in a
way that it would display only simple errors or relevant
data, but prints out all the information it can obtain,
regardless of their importance. The GUI part uses Java
Introspection to unpack the data retrieved from the remote
system. Human readable data is printed to the report area,
more complex objects recursively queried for their public

fields and a detailed tree-structured report is constructed.
Introspection is also used to construct the parameter entry
dialog (Figure 3). Parameter types are analyzed and
appropriate GUI controls are constructed allowing the
user to enter complex parameters such as structs, enums
and arrays.

Figure 3: Parameter entry dialog – constructing a complex
type

3.2 Engine
The only part of the Object Explorer that depends on

the client-server communication architecture (e.g. BACI
CORBA, Abeans, TINE, etc.) is called an engine. All
engines implement a set of interfaces, needed by the GUI
for data access. This layer is relatively thin and easy to
implement for a given control system, as most of the
usual problems are solved by the GUI part. Since the
whole application is designed to be as generic as possible,
the engine implementations should also allow for
different types of objects to be analyzed, which is the
most difficult part of an engine implementation, but pays
off when using the application.

3.2.1 BACI engine
The BACI engine establishes a connection to the ACS’

managers using CORBA. It queries the BACI Manager to
obtain a list of device names, which are first displayed in
the tree and later used to connect to remote entities -
either BACI DOs (Distributed Objects) or BACI
Properties. Furthermore, CORBA introspection (Interface
Repository) is used to determine BACI compliance and
identify design patterns, such as actions, static items etc.
The engine converts the CORBA parameter types to
standard Java types or predefined BACI structures, so that
the GUI can display them and allow users to enter the
parameters. Data returned by the control system is also
unpacked and converted. BACI engine implements
callbacks as CORBA DSI (Dynamic Skeleton Interface)
server. This means that it is capable of unpacking any
callback if its interface is present in the interface
repository.

3.2.2 ABEANS engine
The Abeans engine connects to the Abeans API, which

is running in the same virtual machine as the Object
Explorer. It registers to the framework as a normal
Abeans application and uses the Abeans ServiceBean as a
starting point. It queries the ServiceBean for domains,
types, and names of devices that Abeans can access.
Device beans are then instantiated and initialized so that

they connect to the control system. Java introspection is
used to analyze them and to retrieve all their methods and
fields. Some Java design patterns, such as registration of
event listeners, are identified. Users would have
difficulties constructing event listeners, which would
provide meaningful data about the events, during runtime,
so the Abeans engine hides these complex parameters
from the user and constructs default implementations of
event listeners, which have in most cases proved
sufficient. Abeans design patterns are also identified –
BACI properties are handled separately as nodes in the
tree, while other object fields are only displayed as
attributes; Abeans monitors are displayed as request
nodes - children of the object being monitored, and can be
controlled from within the Object Explorer.

4 CONCEPTS
Generic tools are very powerful, as they instantly

reflect any changes in the control system and need no
modification when new functionality or new devices are
added. To ensure this, introspection was widely used
throughout the application. Introspection is the ability to
obtain information about a class or an interface without
having static (linked) access to the interface declaration.
With introspection, one can get all the data about an
interface (methods, method parameters, return types,
fields, etc.) only by providing its name. Interfaces can be
very wide and allow all possible parameters and return
types, while most of the control systems and even most of
everyday software is built according to some rules or
contracts that software programmers must follow (design
patterns). A simple example of design patterns would be
Java Beans with property getters, setters and event
listeners. Even if we get method signatures from some
introspection service such as CORBA Interface
Repository or Java Introspection, we have to analyze
them to identify design patterns that are common to the
inspected system. BACI engine, for example recognizes
several design patterns of the BACI model:
• Property – property accessor method has a special

signature
• Asynchronous action – one of the method parameters

is of callback type
• Subscription (used in publisher – subscription design

pattern) - the method returns an object of special type.
When BACI engine identifies these design patterns, it can
process the operations and attributes accordingly, i.e. asks
for the relevant parameters, assumes the returned object’s
persistence etc. Introspection alone would not provide this
data and all the methods would be treated equally. With
these second-level introspection capabilities, Object
Explorer is not only useful to test whether the device
servers produce any errors or device functions return the
right values, but also to test the design of the device
servers themselves. The Object Explorer compares its
built-in design patterns to the actual objects and
automatically complains if the objects do not follow the
standards. If such tool would not be available, one would

have to go through the device server code or even
database and check for compliance.

5 PLANS FOR FUTURE RELEASES
Next version of the Object Explorer will be written

using all the new features of Java 1.4 and will use many
of the components and services developed by Cosylab for
CosyBeans. By using the launcher framework of the
CosyBeans library, the application will be able to run
remotely using Java WebStart technology, as an applet
from a web browser, as an internal frame in a desktop
with other CosyBeans applications, or as a stand-alone
application.

The GUI part of the application will change
significantly – the appearance will be much more
customizable, allowing the users to choose between
different types of data representations and to create their
own application layout. Data will be better organized,
each object returned by the underlying layer as a result of
an action will be an entity of its own and the users will be
able to inspect each object to get the information they
need. Users will have more freedom when entering
parameters – they will be able to take an object they
obtained from the control system, modify it, and pass it as
a parameter to an operation. They will also be able to
construct an arbitrary Java object, set its fields, invoke its
methods and use it as a parameter when invoking remote
operations. The application is intended to have a
clipboard for easier manipulation of the most commonly
used objects, an engine for checking the classpath for type
hierarchy and interface implementers, improved error
handling with detailed exception information, better
logging capabilities etc. We are studying ways of
dynamically defining and loading classes that would
implement certain interfaces, if no appropriate
implementers could be found in the classpath, but this is a
rather far-fetched idea that will probably be very difficult
to implement.

The engines will probably not change drastically, but
some other software layers, such as the new Abeans
Release 3 or TINE, will be supported.

6 REFERENCES
[1] http://kgb.ijs.si/
[2] http://www.cosylab.com/
[3] http://www.anka-online.de/
[4] J. Dovč et al., “ANKA Control System Takes

Control”, PCaPAC 2000, DESY, Hamburg, Germany
[5] G. Milčinski et al., “Experiences With Advanced

CORBA Services”, ICALEPCS 2001, San Jose, CA,
USA

[6] G. Chiozzi et al., “Common Software for the ALMA
Project”, ICALEPCS 2001, San Jose, CA, USA

[7] http://www.eso.org/
[8] G. Tkačik et al., “Java Beans of Accelerator Devices

for Rapid Application Development”, PCaPAC 99,
Tsukuba, Japan

