
THE NEW ABEANS AND COSYBEANS: CUTTING EDGE APPLICATION
AND USER INTERFACE FRAMEWORK

Igor Verstovsek*, Janez Dovc, Miha Kadunc, Jernej Kamenik, Igor Kriznar, Gasper Pajor, Mark
Plesko, Ales Pucelj, Gasper Tkacik. Jozef Stefan Institute and Cosylab Limited, Ljubljana, Slovenia

Abstract
The new Abeans and CosyBeans are in their third

generation, developed on the basis of experience gained
from several projects, such as ANKA light source, ALMA
radio telescope project at ESO and NRAO and from
cooperation with control groups from DESY, RIKEN and
elsewhere. Abeans form an application framework and
CosyBeans form a GUI framework, designed for
developers of control systems of large experimental
setups. These allow simple development of complex
applications, providing all the benefits of the underlying
Java platform, such as Java logging, high-speed graphics
of Java 1.4 and easy installation and maintenance with
Java Webstart. Abeans is a library that provides simple
Java beans for connection with the control system. A t the
same time, it provides several useful services: logging,
exception handling, configuration and data resource
loaders, authentication, and policy management.
CosyBeans provide clear and consistent visualization of
dynamic data with standardized presentation of alarms,
monitors and connection status. By means of Adapters
that act as a mediator between the underlying remote data
layer and top-level GUI, CosyBeans decouple
presentation of data from the actual data sources. In this
manner, greater portability and consistency are achieved.
Both frameworks can be used alone independently but
really excel when used together, enabling a coherent look
of applications that run on different protocols. We have
provided plugs for CORBA, EPICS and TINE. We
present some of the main Abeans and CosyBeans
concepts, such as services, Abeans engine, Models, Plugs,
Displayer, Adapter, CosyPanel and Plugin.

1 INTRODUCTION
The concept of Abeans as an application development

framework is not new. Abeans (now called Abeans
Release 2) are already used and thoroughly tested in such
different environments as a synchrotron light source
(ANKA, Germany), an e-p collider complex (DESY,
Germany), proton cyclotron (Riken, Japan) and a radio
telescope array (ESO, Germany) [1].

Experience gained from these projects has indicated the
need for a new Abeans design, named Abeans Release 3
[2]. Over the last years, our group has worked extensively
on this project. The result of the development are two
fully functional, complementary frameworks – Abeans
and CosyBeans.

In this article we will outline the main concepts and
features of the two frameworks. In short, Abeans handle
the modelling of complex systems and data exchange

with such systems, while CosyBeans take care of data
visualisation and provide the application outline.

2 APPLICATION FRAMEWORKS
Abeans and CosyBeans are frameworks for application

building. This means that an application programmer
should be more productive when using both frameworks
than by building applications by him/herself from scratch.
We define more productive as packing more functionality
into the product per unit time, achieving greater
maintainability and allowing easy extensibility. In order
to deliver on these promises, the frameworks must ensure
the following:

Firstly, frameworks factor out shared functionality. In
addition to moving pieces of code that performs the same
task from multiple locations into one location, this also
involves identifying functionality that could be performed
by existing code and designing new code to benefit from
the existing one.

Secondly, the nature of a framework is open-ended: it
can be used in unforeseen contexts. Because it is
impossible to design for this constraint, we provide
simple, often light-weight default implementations, which
can be replaced. This implies modular architecture that
can be realized with careful design, using the strategy,
component and object factories patterns.

Finally, quality assurance means that components work
well and consistently together. Besides things trivial to
enumerate (but harder to produce) like documentation, the
framework should force (through design contracts,
interfaces that are mandatory for implementation and by
careful checking of user input) the user to adhere to
certain preset standards of quality.

Without much further philosophising, we can say that
the three above points bring enough benefits, if fulfilled,
to warrant the use of application building frameworks.

Figure 1: Schematic diagram showing the organisation of
code. From bottom to top follow: Common, Abeans and

CosyBeans and the integration of both.

*igor.verstovsek@cosylab.com

3 PROJECT STRUCTURE
We divided all software into several projects; the

organisation of is displayed on figure 1. The foundation
for both application frameworks, the “Common”, is
displayed on the bottom of the figure and is described in
more detail in the following two subsections.

3.1 Common and Java-Common
The new release introduced automatic builds for our

Java projects. They are built with Ant build tool [3]. Ant
is used because it is easier to manage than makefiles and
because it is customized for use with Java. We have
adapted Ant by writing additional Ant tasks that allow us
to use one generic buildfile for all Cosylab projects,
where the details for each project are stored in one place –
namely SQL database – only [1]. The details include
ALL relevant project data: developers, releases,
dependencies, external jars, etc.

The common software also introduces code used by
both frameworks, e.g. implementations of fast basic
programmatic data structures, utility classes used for
debugging, etc.

3.2 Datatypes-Common
The Datatypes library provides a consistent and

extensible mechanism for producing object models of
data sources. Datatypes are based on the concept of a
Property, a logical object that groups together atomic data
items which logically belong together and the data access
modes for these data items. It further classifies the data
items and data access modes and provides a mapping into
Java language for each of these classifications. Datatypes
library is referenced by both Abeans and CosyBeans.

The purpose of having an abstract property data type is
the ability to use the same object, without transforming it
into other objects (and thereby creating new Java object
instances) at all levels of the client program, from the
plug up to the visualization layer. We have decided to
provide interfaces for basic types – long, double and
string and for sequences of them in order to support fast,
typed data transfer, and at the same time cut down on
development and maintenance costs by eliminating
functionally duplicate types (like float and double
together). In addition, we have also provided a
PropertyGroup – a hierarchical structure where the
properties can be assembled in one of the basic forms –
list, table or tree. PropertyGroup is especially handy for
efficient visualisation of large numbers of control system
parameters.

 4 ABEANS
Given some complex software system, let us say a

distributed system or for example a database, Abeans can
be used to build a model of the complex controlled
system, to build a plug for communication with the
complex system and to organize services not related
directly to the complex system, but to task of application

building. We will look at all this concepts in more detail
in the following subsections.

4.1 Models
Abeans provide the building blocks for constructing an

object-oriented representation of some complex system. If
Abeans are to be used for controlling physical devices,
such as power supplies, vacuum pumps and so on, they
can be used to create power supply objects, vacuum pump
objects, etc. This includes defining the containment of
such objects (objects as in object oriented programming),
their lifecycle and bindings to other services offered by
Abeans.

We have already implemented one fully functional
model – Channel access that models the remote data as
channels and is well suited to model systems that are not
organised hierarchically, like for example in EPICS or
TINE protocols.

In the near future we will implement a model that will
allow structured data – a set of properties can be part of a
larger entity, a device, that mirrors the logical structure of
physical devices, like power supplies, etc. This model will
be called BACI access model, and will be similar to the
organisation now adopted in Abeans Release 2 [1].

4.2 Plugs
Usually, Abeans will communicate with some already

existing software that offers access to the data. For
example, the “complex system” that we keep mentioning
could be a synchrotron hall full of physical devices, or an
array of radio telescopes. But in addition, the “complex
system” could also be a layer of hardware and software
just above the physical devices, that provides data access
to the devices. Usually, such layer is realized as a field
bus, or an in-memory database or any other kind of
structure (even for example ORACLE database) that
offers to exchange the data with the rest of the world
usually over Ethernet (with internet or some proprietary
standard). A plug is that part of the Abeans system that is
responsible for translation of requests originating in an
Abeans model to a communication protocol used by the
complex controlled system.

So far, we have implemented plugs for TINE protocol
for DESY at Hamburg and an EPICS plug that
communicates to the JCA library [4]. This plug was
developed primarily for the SNS project. In addition, the
same EPICS plug can also be applicable to any other
EPICS-based system! In this manner we have effectively
joined Abeans and EPICS, giving the application
developer the best of both worlds.

Together with the BACI model we will implement a
plug for ACS CORBA based system, and in this manner
effectively finish porting of Abeans from Release 2 to
Release 3.

4.3 Abeans Simulator
A very important addition to the Abeans Release 3 is

the Simulator plug. A simulator is a plug that can simulate
any kind of response to an Abeans request, thus

mimicking any remote system for any model. The tree of
simulated objects is built either from an XML file when
Abeans start (each application can have its own simulated
objects), or it may even be built during run-time. Failures
can be simulated as well, including timeouts, exceptions
and error codes. The structure of the response can be
exactly prescribed, including response times, values and
all other relevant Abeans parameters. Abeans automatic
tests use the simulator to ensure the integrity of data
transfer through Abeans libraries.

4.4 Services
Although two Abeans applications that use two models

for the control of two software systems differ in their
basic purpose, they still contain a lot of shared
functionality. Error reporting, logging, resource loading,
configuration management and similar tasks can be
delegated to a body of shared services, which is
implemented once and for all. This approach fulfils the
requirements enumerated in the introduction, but also
guarantees consistent behaviour, look and feel and
functionality across all applications developed with the
Abeans framework.

So far we have implemented the following services:
Authentication service, configuration service, data
resource service, debug service, exception handler
service, report service and thread pooling service. The
details are beyond the scope of this article and can be
found in the Abeans documentation [1].

In addition, Abeans offer standard interfaces for access
to distributed services (i.e. services provided on remote
machines), such as distributed naming service, or a
distributed archive. We used existing technology where
possible: for example, access to object directories (such as
TINE Nameserver or ACS Manager) is done through
standard JNDI (Java Naming and Directory Interface).
Consequently, we can write one single directory browsing
Abeans application, which will run on all Abeans plugs!
Similarly, distributed archive service can access archive
data in remote archive servers. Archive reader application
developed for DESY uses this Abeans service. However,
since the same service will be implemented for EPICS as
well, we will be able to reuse the same application
without modifications to access EPICS archives.

4.5 Abeans as Clients and Servers
Usually, the complex controlled system with its

hardware and software layers acts as a data provider and
therefore a server, and Abeans act as a data consumer, or
a client. Clients are often regarded as being graphical user
interface (GUI) applications. While that may be true,
Abeans themselves do not provide GUI functionality.
They merely serve as a modelling and data access library.
To put it another way, Abeans are a layer that runs on the
client machine, that accesses the data of the controlled
system through the plug and offers it to Abeans users
through the model. An Abeans user might be some
visualization library, such as CosyBeans – in this case the
final result of Abeans and CosyBeans together will be a

graphical application. By saying that Abeans do not
provide GUI functionality we do no imply that Abeans
does not prepare data for visualization. Abeans have been
designed to be used as Java Beans – hence the name – in
visual composition tools as invisible components.

An Abeans user might be some calculation package as
well: such package could get the data from Abeans, do
some calculations and in response, perform certain
actions back on the control system. For example, an
accelerator computation package XAL of the SNS project
[5] defines structures that represent parts of the
accelerator. After integration with Abeans, all of
communication (EPICS channel) management is handled
by Abeans. This simplifies XAL implementation a great
deal, since proprietary handling of channel management,
JCA calls, callback registration, error handling and
message dispatching, all of which were previously
implemented not only by XAL but also in part by
applications, are now all handled by Abeans, making
XAL implementation much cleaner and job-specific.

5 COSYBEANS

5.1 Adapters and Displayers
Where the path of the data item sent from the control

system ends in Abeans, it continues with CosyBeans.
CosyBeans are basically a data visualization library. As
such, they consist of GUI components for display of
single values of different types (doubles, bit-patterns,
etc.), and for display of multiple data items (charts, tables
and so on). To couple the GUI components of CosyBeans
– which can be used as standalone GUI components
without any reference to Abeans libraries or other
libraries – to their data sources (in our case Abeans), we
provide Adapters. Adapters are thin pieces of software
that connect, on one hand, to the Abeans models and on
the other hand, to GUI Displayers that take care of actual
data rendition. In general, Adapters could connect, instead
of Abeans, to some other data source as well.

We have already ported the implementation of
Displayers already used in previous release of Abeans,
such as Gauger, Slider and Ledder to Release 3. It is
important to stress that for all the projects we extensively
use the new features offered by the latest release of Java
1.4 platform, such as assertion checking, high
performance 2D graphics, anti-aliasing, etc. Besides these
we have also developed some new displayers, like
Wheelswitch and Date Selector.

5.1 Utility Graphics Components
In addition to control system specific displayers and

adapters, we also provide a bunch of stand-alone
components for writing applications with Swing. These
include enhanced swing components like button, text
field, number field, table, active tree, etc. with additional
features and performance improvements relevant to
physicists. Some of the components were also developed
from scratch, for example Spike chart, a high-speed chart
built on the experience gained from long-time experience

of our group with Java, About dialog, panels for reporting
messages and exceptions and the like.

5.3 Application Outline
CosyBeans go even further than just providing

visualization for data items. Two important concepts are
introduced and fully implemented: a launchable and an
engine. A launchable is a visual representation of the
application. It is the application's main window. Within
this basic definition certain implied functions are already
hidden. The launchable does not prescribe how it is
launched, it can be started as a stand-alone application, as
an applet, within an internal frame of via Webstart.
Implementation for this is already provided, the user just
has to select a desirable launch scenario. Even more – if
desired, a new application can start in the Java Virtual
Machine (JVM) of a launchable that is already running.
Our experience from ANKA shows that on some
machines there are usually over 5 small applications
running in parallel, thus consuming over 20 Mb per
application, of which a great majority falls to core Java
libraries, together this means over 100 Mb for all the
applications together. By means of JVM sharing, these
applications can now run in the same virtual machine and
consume only about 25 Mb of memory in total!

An engine is the logical or processing part of the
application. The engine and the launchable communicate,
as a design contract, through JavaBeans events and
properties. Such design enforces the separation of
visualization and data access parts also on the application
level.

6 INTEGRATION OF ABEANS AND
COSYBEANS

From the discussions in the preceding two sections it
may seem that Abeans and CosyBeans are tightly
interwoven. In fact, that is not the case at all – Abeans
library compiles without CosyBeans and vice versa, so
there are no cross references in the libraries. Not only on
syntactical level, also semantically each library can be
used alone. CosyBeans engine can be a facade not only
for Abeans services but for the services of some other
framework, should it be written. Abeans as well can pack
the data in a format suitable for display on some other
visualization library, different from CosyBeans; or it
could, as mentioned, be run as a server as well.

However, a true pleasure for the application developer
is to use the two libraries together. Formally, the only
pieces of code that reference both Abeans and CosyBeans
are located in the Abeans-CosyBeans project. Herein we
find specializations of CosyBeans engine for Abeans, the
Abeans engine, CosyBeans Adapters for Abeans and so
forth.

Abeans engine provides a facade for all Abeans
services. While Abeans services are designed with
maintainability and extensibility in mind, they are not
particularly easy to use by themselves. They are accessed
through various interfaces, they provide a lot of

information that is not needed during normal application
operation (as opposed to development or testing stage)
and they mix regularly used functions with advanced
functions. By providing the facade pattern, a developer
gains a real productivity increase.

7 QUALITY ASSURANCE
Quality assurance (QA) and quality control issues are

of central imp ortance for the application framework
developer. The frameworks must be well documented –
besides reference and users manuals also step-by-step
tutorial must be provided. We devoted a lot of effort to
documentation to make our product better in terms of QA.

Besides, the code must be tested in advance because the
same code will be used extensively in very different
projects. Every change in the core of the framework
might potentially influence some unknown application
built on top of it. It is therefore of extreme importance to
have a consistent set of tests of all the possible features
and scenarios that are run every time something is
changed in the code. This is only possible by performing
automatic tests that are run every time the code is built.
We use a testing framework for Java called JUnit [6].

Of course, undetected bugs can always be found by the
CS operator. In addition to usual support, we are also
planning to develop a plugin for CosyBeans that will, in
case an unexpected exception occurs, write an automated
mail to Cosylab support with exception stack trace and
other relevant data, together with optional remarks
entered by the user that has found a bug. We use an
effective bug reporting and managing tool, the Request
Tracker [7]. Thus, the more people will use Abeans and
CosyBeans, the better they will get.

8 FRAMEWORKS AT WORK
We tried to show that our application frameworks are

very functional, provide all the features one expects from
them and much more – to sum up, that our frameworks
are very good. Nevertheless, for the application
frameworks to be a true success, they must be widely
used.

Figure 2 and the table below show the amount of work
invested into Abeans and CosyBeans frameworks and into
the TINE project for DESY that is built on top of them.

Product Lines of
Code

Estimated
Work

Estimated
Cost

Common 7,343 1.58 my $ 213,000

Abeans 26,715 6.30 my $ 851,000

CosyBean
s

44,931 10.54 my $ 1,423,000

Integration 4,214 0.91 my $ 122,000

Together 83,203 20.76 my $ 2,804,000

TINE 14,120 3.22 my $ 435,000

Figure 2: Estimation of work invested into the
development of the frameworks. Development of the

TINE project is shown as a comparison.
SLOC stands for Physical Source Lines of Code, from

which also the amount of work was estimated. The
statistic analysis program that was used was SLOCcount
[8]. It uses a model for the estimation of work time and
costs. This model is not linear, meaning that the work
calculated for completion of all frameworks is larger than
the sum of work for the development of individual parts.
This compensates for the overhead when developing more
projects at once. Average salary was taken to be about $
56,000 / year with an overhead factor of 2.40. It must be
emphasised that the cost estimation is very crude, we
(unfortunately for us) did not get paid even a fraction of
the calculated price. Nevertheless, the following
conclusions can be drawn from the data:

?? The amount of common code, described in
section 3, is relatively small. The largest amount
of work falls to Abeans and CosyBeans.
Integration of the two frameworks is very
lightweight, speaking in favour of the overall
design.

?? Total investment of time into the frameworks is
substantially larger than the time usually devoted
to the development of the corresponding part of
a typical control system project. This implies that
the development of the framework is not
justified for a single project. Hence, the
development of our frameworks is a significant
contribution to the CS community.

?? Project TINE for DESY, which contains Abeans
plug for TINE protocol, two complex
applications Instant Client and Archive Reader
and a sophisticated ACOP chart by DESY. The
total amount of this code is very small compared
to the complete framework, which speaks in
favour of Abeans and CosyBeans – it is easy to
write plugs and applications for a given control
system.

It must be noted that actual development time was
about 8 man-years, which is less than the estimated 21
man-years. This indicates that our team is very efficient –
the reason lies in our long-time experience with the
development of application building frameworks.

If we take the general rule [2] that the effort to build a
framework must be offset by at least three times the

amount of work invested in the application writing
approach to pay off, the Release 3 has still a way to go
before we will be able to say that the development of the
frameworks was justified.

However, the things are looking very bright for the
future of Abeans and CosyBeans – we are currently
implementing a plug for the CS of the SNS project based
on EPICS, we will port Release 3 to an ACS CORBA
based CS that we are currently developing in
collaboration with ESO [9] and we also plan to install
Release 3 in ANKA.

9 CONCLUSION
In the preceding sections we have demonstrated the

advantages of the third generation of our application
development frameworks. A colleague from SNS said
that Abeans and CosyBeans frameworks solve problems
that they did not even know that existed, but were sure
they would found them at later stages of development had
they not chosen to use Abeans and CosyBeans. We
believe that Abeans and CosyBeans are now mature and
ready to be used extensively in any professional client
application.

All in all, it is a much more fulfilling undertaking to
write an excellent application framework than it is to
write tons of similar applications, solving the same
problems time and time again.

10 ACKNOWLEDGEMENTS
We would like to express our sincere thanks to

colleagues at DESY and SNS for their hospitality, useful
discussions and continuous support with the development
of the frameworks. We would also like to thank the
members of the ESO team for valuable suggestions and
stimulations.

11 REFERENCE
[1] Cosylab homepage, http://www.cosylab.com and KGB

project homepage, http://kgb.ijs.si/KGB
[2] Gasper Tkacik, et al., “How to Build Professional

Control System Applications“, PCaPAC 2000,
Hamburg, October 2000

[3] Jakarta Ant homepage, http://jakarta.apache.org/ant/
[4] Ales Pucelj, et al., “Design Considerations for

Integration of Wide Range of Control System
Communication Protocols in Cross-Platform
Framework on the Example of EPICS and TINE”,
PCaPAC 2002, Rome, October 2002

[5] SNS project homepage, http://www.sns.gov
[6] JUnit project homepage, http://www.junit.org
[7] Grega Milcinski, et al., “Developing a Control System

from a Divan Bed”, PCaPAC 2002, Rome, October
2002

[8] SLOCCount project homepage,
 http://www.dwheeler.com/sloccount/
[9] Mark Plesko, et al., “ACS, The Advanced Control

System“, PCaPAC 2002, Rome, October 2002

Common

Abeans

CosyBeans

Integration

TINE

0,00

2,00

4,00

6,00

8,00

10,00

12,00

m
an

-y
ea

rs

