
TU-I2

Rendering Control System Applications

Philip Duval, DESY MST, Hamburg, Germany
Vladimir Yarygin, IHEP Protvino, Russia

Abstract
One of the main goals of the control system engineer

is to provide functional, intuitive, easy-to-use-and-
maintain application programs to the operators,
machine physicists, and hardware engineers. One way
to do this is to avoid writing code entirely and
systematically generate applications via databases and
configuration files, where servers are database driven
and clients are wide-interface or widget driven. The
resulting applications tend to be ‘primitive’, to extent
that client applications can do little more than get data
and display it, or issue commands. That is, it is difficult
if not impossible in such schemes for widget A to react
to an event (a mouse click) and tell widget B to do
something, simple because there is no opportunity to
program. On the other hand programming is itself a
daunting task for many potential developers. A
framework is needed where the same fundamental
application can be generated but where it is
nonetheless possible to expand the application via
simple programming. We propose here the generation
of applications by control system wizards, which react
to input criteria and render fully functional code to the
desired platform. This code can be run as is and/or be
used as a starting point for further development.
Specifically, the TINE server wizard will be presented,
which generates server-side projects in C or Visual
Basic. The TINE client wizard will also be presented,
which generates client-side projects in Visual Basic,
Java, and DDD (DOOCS Data Devices). In the case of
the client wizard, an application exists as a ‘meta’-
application in XML format, specifically UIML (User
Interface Markup Language).

1 INTRODUCTION
Many control systems packages offer ‘generators’ of

one form or another, the goal being to provide
applications (server-side or client-side) with minimal
effort. To date, most efforts involve ‘tailoring’, where
configuration files provide input to collections of
widgets and components, or other interfaces, whose
behavior and functionality are pre-determined. In other
words, there is no possibility of programming, if
additional behavior or other embellishments are desired.
In this paper, so-generated applications will be referred
to as ‘non-extensible’ as opposed to applications where
the user can extend its capabilities via programming.
Such applications are termed ‘extensible’. While ‘non-
extensible’ applications might cover, say, 90 percent of
the control system needs, there are a good many cases

where ‘extensible’ applications are desired by users of
the control system. Indeed, everyone knows this, and
those control system packages which provide primitive
generators als o provide APIs for making extensible
applications where necessary.

Generating extensible applications is on the other
hand a good deal more involved than tailoring non-
extensible ones. In this case, we need to generate code,
projects, and make files, and make sure that the
generated products compile, link and run. With
platforms such as java, we could also consider
generating a running application on the fly. This
technique is called ‘rendering’. Of course, if we simply
stop here, the product is apt to have the same order of
capabilities as tailored applications. However, for one
thing, as we now have code at out disposal, we don’t
have to stop here. For another, many of the rendering
techniques used in, say, UIML[3] offer methods of
rendering dynamic cross-link behavior among a
collection of components, something that is very
difficult if not impossible to realize with standard
tailoring. In other words, if I want to, for instance, click
on chart, determine which array element I clicked on,
use this as input in another chart, etc., etc., I stand a
chance of achieving this if I can generate code. If on
the other hand I can only push input into the
components at my disposal, and must rely on the
component to do something reasonable when I click on
it (because I have no influence on its ‘click’-behavior), I
will be left with only the basic behavior of the
individual widgets themselves. Server applications will
necessarily require programming logic targeted to the
specific behavior of the hardware represented.

Consider the following two cases.
One (Server-side): An existing front-end data

acquisition system needs to be integrated into the
control system. If the control system is of the
‘primitive’ variety, then the data-acquisition system
either needs to be a “perfect fit” or the control system
engineers might have to invest considerable time retro-
fitting device drivers, IO addresses, control algorithms,
command structures, alarm information, archiving
information, etc.. If the control-system is of the “do-it-
yourself” variety, then the control system engineers
will have to understand how to integrate what already
exists into the control system (with possibly the same
investment in time) or they can present the engineer
responsible for the data acquis ition system with the
control system API and ask him to integrate it.

Two (Client-Side): A machine physicist wants to
write a diagnostic application. He knows what control
system data he wants to use and he wants to be able to

TU-I2
combine and manipulate the data in various ways.
Widget-driven tools are more than likely useless,
unless they do exactly what the machine physicist has
in mind. The machine physicist must then present his
wishes to the control system staff and hope that
something will happen, or he must himself be able use
the control system API on some platform he can
understand.

In the cases above, the hardware engineer and the
machine physicist might be willing to use the control
system API themselves as long as the “learning curve”
is shallow or non-existent, tantamount to producing
results quickly. Indeed, the control system staff itself
will welcome any tools which increase productivity.

Ideally, the non-specialists would not have to learn
an API at all. Rather, the desired functionality could be
achieved by answering friendly questions in a setup
wizard, which would create the interface (generate the
code) needed for the platform in question. The
specialists likewise tend to welcome such setup tools,
as they provide a head start in application development
(the alternative typically being to copy code from
working examples and editing it into something
relevant).

Finally, consider the following case.
Three: A comprehensive console application exists,

covers all the needs of the operators, machine
physicists, and engineers. However, as it was written
in Visual Basic it cannot run on non-windows platforms
and is therefore not available to Controls Group B, who
use Linux machines as the standard console platform.

If the above application is wished say as a Java
application, then either the control system staff must
rewrite it or regenerate it.

Here too there is an ideal situation. Namely, if the
application in question exists as a “meta-application”
(such as an XML-file containing the information and
instructions needed to render the application) then
converting it to Java (or C++, or HTML, etc.) becomes
trivial if there is a “renderer” capable of transferring the
XML instructions into code. Indeed, the (meta-)
application becomes separated from its many different
“views,” be they console programs, interactive web
pages, voice-applications using Voice XML, etc.

Below we shall describe the current status of the
TINE server wizard and TINE client wizard in use at
DESY. For more detailed discussion on the TINE
control system, please see reference [1] as features of
the control system will be only briefly mentioned in this
article.

2 TINE SERVER WIZARD
TINE is object-based to the extent that device servers

offer front-end information in the form of properties and
devices. TINE properties can be read-only, write-only,
or read-write and should be thought of as
corresponding to methods (perhaps get/set methods)
as in some cases (e.g. property “initialize”), a property
could be simply a trigger. All properties are available
via a variety of data access methods.

The current TINE server wizard addresses only the
basic server functionality and not hardware IO. The
goal is to present the server developer with a setup tool
where he can input the functionality the server is
supposed to have. The generated project will not have
information as to the hardware IO and therefore
contains numerous “TODO” statements at strategic
locations in the code. Until the developer modifies the
code to interface to the real hardware, the data
generated for the properties will be simulated.

Note that this frequently follows what actually
happens in real situations. Namely, an engineer thumbs
through a catalog, chooses a hardware interface card
which does what he wants and has the characteristics
he needs, and implements it. As it comes with an
ActiveX control, he easily builds a stand-alone data
acquisition station, and then offers it to the beam
diagnostics group, which wants it integrated into the
control system as soon as possible. By making use of
the TINE server wizard, this turns out to be an easy
task .

As an example consider the input parameters shown
in figure 1 below.

TU-I2

Figure 1: TINE Device Server Setup Wizard with example input.

The wizard selections above will generate either a C
project and/or a Visual Basic project. Note: One could
imagine generating, for instance, a LabView project as
another alternative. Although the TINE ActiveX server
control works fine with LabView, LabView uses a
proprietary binary storage format which makes the
rendering task difficult if not impossible. for project
information A fragment of the generated C project is
shown below in figure 2. In this case a generated make
file will immediately build a server executable, which will
happily deliver simulated data. Using this code as a
starting point, the developer can quickly see what he
needs to do to interface his hardware data.

The TINE server wizard is currently a “one-pass”
wizard. This means that there are no “tags” within the
generated code which separate the “hands-off” regions
from the code sections the developer is allowed to
change.

The code generation process consists of supplying
the information as shown in figure 1 through a dialog
process. This dialog exists as either a VB program or a
TCL script. The dialog then generates an intermediate
repository. The server wizard uses the TINE
“exports.csv” [1] file as repository, since it is itself
useful following the code generation. The repository is
then rendered into the desired language.

Figure 2: Sample of generated C code give the settings shown in Figure 1.

3 TINE CLIENT WIZARD
Generating server code essentially boils down to

providing functionality without worrying about visual
components or user-interface dialogs. Not only are
console programs visual and have a user interface, but
apart from the most trivial cases they tend be

specialized. Nonetheless, one has the same goal of
supplying design criteria to a client setup wizard, which
will generate a client-side information repository to be
used to render client projects (or even running
programs) for the specified platform. In this case, a .csv
File is not at all suitable as a repository.

TU-I2
There is already much enthusiasm for wizard-driven

user-application development. Two such specifications
have been examined for use in the TINE client wizard,
namely GLADE [2] and UIML [3]. Both of these make
use of XML as information repository. We use the
UIML specification for rendering client-side control
system applications, as it has a methodology for
handling events and actions. The specification for
dealing with the “usual” visual toolkit component
objects (i.e. buttons, labels, list boxes, etc.) is already

well thought out. It remains to supplement it with data
access, and “charting” components (such as ACOP
[4]). Note that UIML is XML. What we need to
standardize on is a CSML, i.e. a Control-System Markup
Language.

Currently we are using a data access specification
exemplified by the following UIML snippet, which
specifies that a data link to obtain the horizontal orbit
should be started when a button is pressed:

 <rule>
 <condition>
 <event part-name="button1" class="actionPerformed"/>
 </condition>
 <action>
 <call name="TineLink" return-type="String">
 <param name="output" type="ACOP">TChart1</param>
 <param name="DevContext" type="String">HERA</param>
 <param name="DevServer" type="String">HEPBPM</param>
 <param name="DevName" type="String">WL197 MX</param>
 <param name="DevProperty" type="String">ORBIT.X</param>
 <param name="DataFormat" type="String">float</param>
 <param name="DataSize" type="int32">141</param>
 <param name="LinkMethod" type="String">poll</param>
 <param name="LinkTimeout" type="String">1000</param>
 </call>
 </action>
 </rule>

 UIML renderers, which parse the UIML and generate
the necessary code, are commercially available
(Harmonia [5] offers renderers for Java, HTML, and
VoiceXML for instance). However they are not generic
enough to offer graphical display and data access on
the one hand or to offer cross over renderering to other
language groups such as Visual Basic on the other.
Therefore, we have written our own TINE renderers for
VB and Java. The case of DOOCS DDD[6] is also an
interesting one, since the plan there is to use a CSML
scheme to hold the DDD configuration information.
Thus DDD would become a rendering tool in itself, or
rather a tailoring tool, since DDD does not produce
extensible applications. The DDD GUI builder can then
also be used as an application wizard, where one can
trivially generate those applications not requiring
display logic (the afore-mentioned 90 percent) and
generate viable VB or Java projects where more
complicated display logic is required.
 A sample UIML description hardly longer than the
above snippet produces the rendered VB application or
Java application shown below in Figure 2.

Figure 2. A trivial rendered application.

The application shown in Figure 2 is of course

ridiculously trivial. Indeed the current TINE renderers
are by no means restricted to such simple applications,
whose functionality would by covered by primitive
tailoring applications anyway. However it is instructive
to have brief look at the generated code, as that is the
whole point: The application is extensible. In VB for
instance, the rendered event handler responsible for
processing the incoming data looks like:

Sub TChart2_Receive(ByVal LinkIndex As Long, …

TU-I2
 Dim result As Integer
 If StatusCode <> 0 Then
 TChart2.Caption = "Poll fails: Err " + Str$(StatusCode)
 Exit Sub
 End If
 TChart2.ClearScreen
 TChart2.ClearText
 result = TChart2.Draw(TChart2y)
 TChart2.AutoScale True, True, True, True
 TChart2.XAxisLabel = "X" & Now
End Sub

With this as a starting point, one is free to remove

the ‘AutoScale’ functionality if not desired, or to plot a
reference orbit (using the ACOP ReferenceFunction()
method), and so on.

The ideal situation would be to have applications live

as UIML repositories, which can be rendered not only
to the platform of choice, but to the control system of
choice. This requires adherence to a common UIML
control system specification as well as the
corresponding platform specific/control system specific
renderers. As the first task of the wizard is to generate
the UIML repository, we imagine a setup wizard similar
to the server wizard, where the developer provides
information as to what device servers need to be
accessed and what should be displayed, etc. We could
also imagine the ability to scan an existing, say, VB
project and produce the UIML. This UIML could then
either regenerate the VB project or, more interestingly, a
Java project, thereby offering a way to convert VB code
to Java code.

4 CONCLUSION
The TINE server wizard has been in use for the better

part of the past two years and has been a welcome
addition to the set of development tools. This is
primarily because it generates default code covering the
operational setup and functionality of a server. It also
helps to eliminate “optimistic-programming traps”
where a developer might forget to check a return code

for success, etc. Developers should of course learn
and be familiar with these aspects of a TINE server,
however the wizard not only offers a tremendous head
start but also immediate successful feedback.

The TINE client wizard is still a work in progress but
has now reached a useable state, primarily regarding
development in Java. Many control system developers
at DESY are familiar enough with using TINE in a VB
context so that the modest head-start a wizard-
generated application might give is for them frequently
not worth the trouble. Those new to the system, on
the other hand might have a different opinion.
However, as Java is new enough to most developers at
DESY, rendered applications are much welcome, since
they eliminate a considerable amount of groping in the
dark. Furthermore, as such a wonderful open-source
java development such as Eclipse[7] does not yet
provide a GUI builder, a generated GUI application is
also a welcome beast.

The development and wide acceptance of a CSML
will also be welcome. This could in fact provide a real
basis for software sharing, at the behavioral (or maybe
‘meta’) level. Institute A could be using an entirely
different platform, control system, display tools, etc. as
Institute B. However, if both are capable of rendering
CSML to their target platforms and control systems,
then a CSML meta-application can be trivially shared.

REFERENCES
[1] Philip Duval, “The TINE Control System Protocol:

Status Report”, Proceedings PCaPAC 2000, 2000.
and http://desyntwww.desy.de/tine

[2] http://glade.gnome.org
[3] http://www.uiml.org
[4] I.Deloose, P.Duval, H.Wu, “The Use of ACOP Tools

in Writing Control System Software”, Proceedings
ICALEPCS’97, 1997.

[5] http://www.harmonia.com
[6] K.Rehlich, “An Object Oriented Data Display for

TESLA Test Facility,” Proceedings ICALEPCS’97,
1997.

[7] http://www.eclipse.org

