
* - rok.sabjan@cosylab.com

VISUAL DCT – EPICS DATABASES CAN BE FUN

Rok Sabjan*, Sunil Sah and Matej Sekoranja, J. Stefan Instititute and Cosylab Ltd., Slovenia,

John Maclean, APS, Argonne National Laboratory, USA

Abstract

Visual DCT [1] is an EPICS [2] configuration tool
completely written in Java and therefore supported in
various systems. It was developed to provide features
missing in existing configuration tools as Capfast [3]
and GDCT [4]. Visually Visual DCT resembles GDCT
- records can be created, moved and linked, fields and
links can be easily modified. But Visual DCT offers
more: using groups, records can be grouped together
in a logical block, which allows a hierarchical design.
Additional indication of data flow direction using
arrows makes the design easier to understand. Visual
DCT has a powerful DB parser, which allows
importing existing DB and DBD files. Output file is
also DB file, all comments and record order is
preserved and visual data saved as comment, which
allows DBs to be edited in other tools or manually.
Great effort has been taken and many tricks used to
optimize the performance in order to compensate for
the fact that Java is an interpreted language. Visual DCT
is fast becoming the most popular tool among EPICS
community, constantly being updated for performance
tunning.

1 BASIC PRINCIPLES
VisualDCT was designed [5] to create and maintain

EPICS record instance database (.db) files. In order for
VisualDCT to execute properly, a database definition
(.dbd) file (or files) has to be provided which contains the
specifications for the various record and device types that
they intend to reference in any record instance database
(.db) file to be created by VisualDCT. Once a database
definition (.dbd) file has been specified, records can be
created, copied, renamed, etc. using the various facilities
provided by VisualDCT.

As the user interacts with the various VisualDCT
windows, selections, and data entry fields, the results of
these interactions are displayed on the screen. Revisions
and data entry updates of record instance data displayed
on the screen do not replace previously stored record
instance data until the user saves currently modified
record instance database (.db) file. As VisualDCT
executes, it attempts to trap and display the most common
situations that might lead to diminishing the integrity of
the user supplied information.

VisualDCT’s main objective is to offer powerful and
intuitive development environment to the EPICS database
engineer. With having numerous features and each of

them “just one click away” time and effort can be focused
on the database design instead on using the tools. A lot of
focus has been put on visualization and performance.

In order to run VisualDCT, Java Runtime Environment
2 (version 1.4) is needed [6]. VisualDCT is distributed [7]
as a Java ARchive package (.jar file), so there is only one
file in the binary distribution.

2 NEW UPDATES
VisualDCT is fast becoming the most popular database

configuration tool among EPICS community. The ever
increasing number of users has also a very positive effect
on the VisualDCT itself. Extensive use provides bug
information and new feature requests. During this
summer, VisualDCT was significantly updated. Several
new features were introduced, from requests primarily
coming from the users.

VisualDCT uses ANT [8] scripting language for build.
This enables the developers to produce automated nightly
builds and publish the results on the internet [7].

Configuration of VisualDCT was simplified.
VisualDCT now uses Java Preferences API [9] (which
comes with Java 1.4) and stores its configuration
information on the system dependent backing store
(Windows registry on Microsoft platforms or .files on
Linux).

Multiple DBD files can now be used on a single DB
file. Path to the needed DBDs is then stored in the DB.
VisualDCT also offers a selection dialog window in
which the user can manage all the DBD files in use.

As addition to groups, records and links, new graphical
components have been added. The user can now create
arbitrary comments in textboxes which also support html.
This enables users even add images right into the
VisualDCT. Other graphical objects such as lines, arrows
and rectangles can be also used to illustrate the database.

The user has now the possibility to choose fields to be
displayed. By default, VisualDCT displays only fields
with non-default values. By clicking with the right mouse
button on the field description in the Inspector dialog, the
user can force the field to be displayed either always or
never or in default mode. The current mode for the field is
indicated by a small eye image next to the field
description. The new Inspector dialog has now also the
ability to display fields in alphabetical order or the order
in which they are defined in the dbd file.

Inspector now compares format of all input and output
fields to the definition in the dbd file. Any mismatch is
represented with red text color.

To improve on printing performance, VisualDCT now
supports postscript. It is possible to export the visual
contents to a postscript file or directly print it on a
postscript printer.

Figure 1: Graphical comments and new Inspector

dialog

3 HIERARCHY SUPPORT
Some other database configuration tools also included

support for some sort of hierarchical design. A new
hierarchy design has been used for VisualDCT, which will
be considered at integration of hierarchy support into
EPICS base (presumably version 3.15). VisualDCT
remains backward compatible as the hierarchy can be
flattened into normal EPICS database.

The current EPICS template substitution mechanism is
very restricted in its capabilities. It requires two input
files (.template and .substitutions) that have
radically different syntaxes, and it only allows macros to
be passed downwards into a template instance.
Hierarchical templates as implemented by VisualDCT
must allow macro values to be passed into the template
instance (giving values for fields within the expanded
template), and values to be exported from the template
instance to the higher level (usually the destination field
name for a link in a record defined in the higher level
.vdb file).

3.1 Expand and template statements
Macros are defined in an expand (Figure 2)

statement and pass information into a template; ports are a
kind of macro defined in a template (Figure 3)
statement that pass information upwards out of a template
instance to their calling database. Here's an example of a
top-level file using the proposed syntax:

record(calc,"slide1:error") {
 field(INPA,
"$(slmot1.position)")
 ...
 }

 expand("slideMotor.vdb",
slmot1) {
 macro(name, "sm1")
 macro(address, "4")
 macro(demand,
"slide1:demand.VAL")
 }

Figure 2: Example of the expand statement

Note that we're using the macro syntax

$(template_instance_name.port_name) to bring port
values from the template instance into the higher level
diagram. Unfortunately we have to allow port macros to
be used before the related expand statement appears in the
parent .vdb file, so the database flattening tool will have
to make two passes through the data and should also
detect loops in port/macro definitions.

When performing macro substitutions within strings, if
a macro name is undefined the macro name and its
surrounding $() characters will be left unchanged in the
flat .db file. This allows templates to be used when
creating a database that still takes macro arguments on
loading with dbLoadRecords(). For undefined port
macros though an error should probably be reported
instead (but remember that these can't be properly
checked and substituted until all expand statements and
their related templates have been read in).

Inside the template file slideMotor.vdb, we can define
ports using the new template statement. Ports are usually
going to contain record.field names, but they can be
literal strings and may use macros in their value:

template("Description of the Slide
Motor template...") {
 port(speed,
"$(name):speed.VAL", "Record to set
motor speed mm/sec")
 port(go,
"$(name):startmoving", "Forward link
to this to cause movement")
 port(position,
"$(motor.position)", "Current position
of the slide")
 port(greet, "Hello, world!",
"Just being friendly...")
 }

Figure 3: Definition of ports in a template file

Templates have special representation in VisualDCT.

They are displayed almost like records. Inside the
rectangle, template’s macro values are shown and the user

can access template’s ports as any other link fields of a
record. The user can also use SHIFT-click technique on it
to open the template itself:

Figure 4: VisualDCT has special graphical

representation for template instances

3.2 Database Flattening

In order to make database useful for EPICS all the
templates have to be instantiated (e.g. the database needs
to be flattened).

VisualDCT is the first tool that is capable of flattening
this new database hierarchy syntax (capFast designs have
always had similar hierarchical template capabilities),
although at least one other will be produced in Base
R3.15 for use with gnumake. The flattening process
involves expanding all templates and replacing the macro
and port macro variables with their strings. If a macro
name is found that has no definition within its scope, it
will be left exactly as it was found, which allows load-
time macros to be used. We also strongly recommend that
flattening tools mark the beginning and end of each
template file in the flat database file using a comment as
follows, to provide a way for other tools to refer back to
the original template from the flat file:

 #
expand("/full/path/to/template.vdb",
instance_name)

 ... expanded contents of
template.vdb

 # end (instance_name)

Figure 5: Flattening tool comments

4 CONCLUSION
Taking into account all aforementioned features, we can

justifiably state that EPICS has obtained a very powerful
development tool, beating the competition in capability
and user friendliness. We must not forget that a large
proportion of EPICS community still uses text editors to
configure their databases. With extensive use of shell

scripts and manual editing, it gets very hard to maintain a
large control system. So, though EPICS is very scalable, it
gets very messy over a period of time and drives a lot of
human resources to maintain all the databases.

We believe that VisualDCT can help tremendously in
this area. Even the costs of initial database configuring
are cut, but the biggest gain may occur after a month or a
year, when something needs to be changed. Visual
representation proves to be invaluable (“one picture is
more than a thousand words”). This is proved by the use
of VisualDCT around the world. It is even being used to
reverse engineer text databases.

 Another benefit for using VisualDCT is that using it is
plain fun. Even computer non-experts are perfectly able to
use it, because it requires mainly just common sense.
With new updates regarding user interface, one can easily
produce attractive databases.

VisualDCT can as such easily be declared as a RDD
(rapid database development) tool, signalling a fresh wind
in EPICS database design.

5 ACKNOWLEDGEMENT
We would like to express our gratitude to Steve Hunt of

the Swiss Light Source [10] who was the first to
encourage the development of VisualDCT and was the
funder of the original version, which was the product of
collaboration of SLS and Jozef Stefan Institute (JSI) [11].

The latest upgrades were produced by the newly
founded Cosylab [12]. and financed by the Advanced
Photon Source (Argonne National Laboratory) [13] and
Diamond Synchrotron Light Source (UK) [14]. Their
cooperation indicates the strong commitment of EPICS
community to VisualDCT for what we are very thankful.

Last but not least, I would like to thank John Maclean
and Andrew Johnson of APS who have actively
contributed with many great ideas and have also been our
greatest critics.

5 REFERENCES
[1]http://visualdct.cosylab.com
[2]http://www.aps.anl.gov/epics
[3]http://www.phase3.com/epics.html
[4]http://www.aps.anl.gov/asd/controls/epics/EpicsDocu
mentation/ReleaseNotes/GDCT313.html
[5]http://http://www.cosylab.com/PageFiles/Articles/ICA
LEPCS01-
Visual_DCT/Visual_EPICS_Database_Configuration_To
ol.pdf
[6]http://java.sun.com/j2se/
[7]http://www.cosylab.com/visualdct/builds/VisualDCT/
[8]http://jakarta.apache.org/ant/
[9]http://java.sun.com/j2se/1.4.1/docs/guide/lang/preferen
ces.html
[10]http://www.sls.psi.ch/controls/controls-home.html
[11]http://kgb.ijs.si/
[12]http://www.cosylab.com
[13]http://www.aps.anl.gov
[14]http://www.diamond.ac.uk

