
A GENERIC SIMULATOR OF CONTROL SYSTEMS FOR APPLICATION
DEVELOPMENT AND TESTING

Dragan Vitas*, Mark Plesko, Gasper Tkacik, Ales Pucelj and Igor Kriznar

 Jozef Stefan Institute and Cosylab Limited , Slovenia.

Abstract
The modern approach in software development for

control systems requires RAD tools like the
CosyBeans/Abeans framework. These tools enable the
developer to quickly produce an application with well-
tested functionality. This shifts the developer's focus to
device integration, which is always case specific and
needs good testing. When the new application is deployed
on a real system for the first time, everybody expects that
it will run smoothly and without any strange behavior. In
practice this is not often the case.

Thorough tests are still necessary to verify that the
application behaves according to specifications, in
particular the graphical user interface. This can be done
only in a realistic environment. Unfortunately, it is a
common case that developers are not allowed to interfere
with a running system. We have therefore developed a
generic simulator that tries to simulate as realistically as
possible a running system. Even erroneous behavior or
situations that are not likely to ever happen in a real
system can easily be produced with a simulator to test
how the application will respond to them. The application
programming interface of the simulator allows adaptation
to different control systems and the writing of value
generators, small routines that simulate a particular
behavior. In this paper, we present the architecture of the
simulator and different areas where we have successfully
used it. Using the simulator, our developers have polished
their masterpiece, improved its performance and got rid of
bugs before anyone even noticed that they were there.

1 DESIGN PRINCIPLES
To facilitate application development and testing in our

company [1] we developed a software program named
Simulator. The Simulator follows few design principles:

• It must not be specific to any particular control
system software.

• Its design must be flexible enough to allow the
tester to simulate almost any kind of response to a
given request.

• The design must allow easy implementation of
new specifics.

• Applications have to be tested without being
modified.

• The user must be able to write extensions in a
language and platform of his choice.

The logical schema is shown in figure 1.

Figure 1: Simulator overview.

2 SIMULATOR ENGINE
The core functionality of the Simulator is independent

of any specific control system and will be referred to as
the Engine in this document. The Engine functionality is
exposed as a CORBA [2] object. This is chosen for the
following reasons:

• The interface is defined in a standard way - IDL
file.

• Multi-language, multi-platform clients can be
created.

• Advantages of the CORBA infrastructure can be
exploited.

The Engine is essentially storage of name/value pairs. The
name/value pairs linked with their data are named
properties. The property value can be submitted to or
requested from the Engine. When the property value is
requested, the Engine will use a routine in order to

*Dragan.Vitas@cosylab.com

produce a value. These routines are named value
generators. The Engine enables registration of a function
that will be called when the property value is changed.
These functions are named listeners. The Engine is
implemented with performance and robustness in mind
and because of this it is implemented as a multi-platform
multi-threaded CORBA server in C++ using the
ACE/TAO ORB [3]. Its main duty is to handle a large
number of properties, produce their values and notify
subscribed listeners. In addition it handles other activities
such as creating and destroying properties, configuring
their behavior, searching for properties, subscribing
listeners and generators and producing listings about its
configuration and state. Its persistence can be stored in a
set of XML data. The data can reside locally or they can
be fetched from remote XML storage using CDB
(Configuration DataBase) [4].

2.1 Properties
The properties in the Engine have associated data,

which are used to handle property configuration and its
behavior. The data are property type, value range, current
generator and subscribed listeners. The properties in the
Engine are typed. This means that the Engine cares if the
property is double, long or string. A property can also be
of CORBA Any type. Property value can in that case be
arbitrary and the Engine treats it as 'other' type. Such
types are treated the same as basic types except that their
values cannot be generated but are returned by the Engine
as they are. This is because we want to have a simple
interface for generators with a few, but enough number of
types. Range is specified as an interval (from-to) in which
property values are allowed, the generator is a reference
to the currently chosen generator while the listeners are
recorded as a simple list of objects.

2.2 Value generators
The value generator is a small piece of code that is

responsible for producing property values. The Engine
has a few predefined value generators:

• Sinus: Values are varied according to a sine curve
• Random: A random value is returned in a

property’s range
• Fixed: The value is always the same fixed value
• Set: The value returned is the same as the value

that was set for this property from the client
application

• Increment: The value is incremented each time it is
requested

These generators are fixed and they are implemented and
instantiated by the Engine itself. Beside these generators
there is one special type of generator – Remote. The
remote generator is a CORBA object. Its interface is
simple and straightforward to implement. Generally one
virtual function is to be implemented. The remote
generator is used when the user needs special handling of
the property value. Typically, the Engine runs on a server
while the remote generator runs on the user machine. The
Engine will ensure that the remote generator will be

called each time the get_value() request arrives to the
Engine for the so configured property. In that case the
user code is responsible for the value the property will
have and how quickly it will be produced.

2.3 Listeners
The listener is a registered callback that is called each
time the value of the property changes. The listener is a
CORBA object, too. The listeners are typically used by
the Engine clients to display current value of the property.
The listener is useful if we would like to implement a
value generator for a property, which depends on other
properties. The listeners can be chained on a single
property. The notification activity does not disturb other
activities of the Engine. Even problems notifying one
listener do not bother other listeners. If the Engine is
unable to notify a listener after a few tries, it will
automatically unsubscribe it.

3 CONFIGURATION CLIENT
The configuration client is a generic tool for basic

Engine functions. It is a CORBA client for the Engine
server. Through the configuration client the user can
browse properties that currently reside in the Engine. The
user can filter the list and configure the property. For
example, he can change value range or generator of the
property. We have provided configuration clients in
JAVA and C++ with GUI, and as a command prompt
application. This spectrum proves that the Engine
implementation as a CORBA server is a good choice,
since writing a client is a matter of a few function
implementations, because all tricky parts for connection,
network communication and parameters marshalling is
handled by the CORBA. In addition there is a special
possibility of communication with the Engine -
CorbaScript [5]. CorbaScript is an interpreted object-
oriented scripting language dedicated to CORBA
environments and therefore a perfect match for the simple
value generators or for the listeners. Since it is a scripting
language there is no need for the user to compile and
assemble the executable, and changes are in effect
immediately after they are saved. The next step of
Simulator development could be the integration of
CorbaScript with the Engine and its export as box to the
clients. In such a way users will have everything in a
remote black box without any need for local software in
order to use and exploit the Simulator.

4 EMULATORS
The Abeans [6] [7] framework is applicable to any

control system thanks to its plugable model. Because of
that, our developers can produce GUI applications that
run everywhere and therefore the Simulator must follow
that philosophy too. Emulators in the Simulator are
software parts that come between the user application and
the Engine. The emulator handles all specifics of its
clients and represents a view of a control system. On the
other side it utilizes the Engine.

4.1 CORBA emulator
The CORBA emulator is an object factory that creates

CORBA objects, which simulate operations just by using
an interface definition. Its input is an IDL file from which
it creates objects capable of executing operations
specified in the given interface. It relies on an Interface
Repository [2] as the store for interface definitions. The
CORBA emulator is itself a CORBA object with a very
simple interface. Actually it has only one function:
interface CORBAEmulator
{

DeviceServer createServer(in string
idIDL, in string servName);
};

The first parameter is an IDL identifier. For example
"IDL:ACS/PS/PowerSupply:1.0". It identifies the
interface, which the created CORBA object should
represent. The Parameter servName is used to create
servers name so the client can find and connect to that
object. Created name looks like ‘server:port/servName’
and it is described in the Interoperable Naming Service
specifications [2]. The emulator first tries to locate the
given IDL in the interface repository. If it succeeds it
constructs an interface description. Based on that
description it creates properties in the Engine in such a
way that all encountered in-out, out and return values are
created. For example if the servName is ‘PW_SUPP_HU‘
and the following method description
long get(out double ampVal);

is found in the interface PowerSupply, the emulator will
create
PowerSupply.PW_SUPP_HU.ampVal DOUBLE
PowerSupply.PW_SUPP_HU.get.returnValue LONG

properties in the Engine.
After that the emulator creates a DeviceServer object that
is a DSI (Dynamic Skeleton Invocation) [2] server.
Thanks to DSI technique, the created object can simulate
any type of function with any number and type of
parameters. When the DeviceServer gets a request, it
scans for input parameters and puts them in the Engine,
fetches return values and all output parameters from the
Engine and returns the assembled response to the
requestor.

4.2 ACS emulator
The basic components in the ACS [8] system are

known as Distributed Objects (DOs). DOs are CORBA
objects and as such they can be simulated using the
CORBA emulator, but in such a way only client
applications can be tested but not the ACS core itself.
With the ACS emulator all parts of the ACS system can
be tested including core components from BACI [9] and
MACI [10]. The DOs have properties, which use the
DevIO interface for accessing their values. This interface
is the ideal place for the ACS emulator and the ACS
emulator is actually a subclass of the DevIO interface that
instead of using hardware devices, uses the Engine to
store and fetch values. This emulator is in the form of a
shared library that comes instead of one original ACS
shared library. To run the ACS in simulation mode all we

have to do is ensure that the emulator library will be
located in the search path before the original one.

5 CONCLUSION
We found the Simulator very useful for evaluation of

applications performance in critical network traffic
situations. We use it to identify problems and critical
factors as early as possible in the application development
process. Since the interaction with the Simulator can be
slow or fast, some application code that runs unacceptably
slow can be spotted easily. In a real system you cannot
tell for sure whether the problem lies in network traffic,
device drivers, hardware or control system but with the
Simulator you can systematically eliminate possibilities
one by one and for sure spot the part of the application
that is problematic. Using the Simulator we can predict
application scalability and performance for a given
environment and system complexity. We use it to test
exceptional conditions and operations limited or restricted
on a real system because of security or some other
reasons.

Thanks to the Simulator our developers can do all their
exhaustive tests in an environment similar to a real
situation and because of that our clients get their working
applications free of bugs with the first deployment and
that makes them happy. Developers on the other side can
work from a place of their choice, such as from their sofas
[11] and that makes them happy too.

6 REFERENCES
[1] Cosylab homepage, http://www.cosylab.com and
KGB project homepage, http://kgb.ijs.si/KGB
[2] CORBA (http://www.omg.org)
[3] ACE/TAO (http://www.cs.wustl.edu/~schmidt)
[4] CDB – ACS Configuration DataBase
 (http://kgb.ijs.si/KGB/Alma/Docs/CDB.pdf)
[5] CorbaScript (http://corbaweb.lifl.fr/CorbaScript)
[6] Abeans
(http://kgb.ijs.si/KGB/Alma/Docs/Abeans_White_Paper.p
df)
[7] Igor Verstovsek, et al., " The new Abeans and
Cosybeans: Cutting edge application and user interface
framework ", PCaPAC 2002, Rome, October 2002
[8] Mark Plesko, et al., "ACS, The Advanced Control
System", PCaPAC 2002, Rome, October 2002
[9] BACI - ACS Basic Control Interface Specification
(http://kgb.ijs.si/KGB/Alma/Specs/ACS_Basic_Control_I
nterface_Specification.pdf)
[10] MACI - Management and Access Control Interface
Specification
(http://kgb.ijs.si/KGB/Alma/Specs/Management_and_Ac
cess_Control_Interface_Specification.pdf)
[11] Grega Milcinski, et al., "Developing a Control
System from a Divan Bed", PCaPAC 2002, Rome,
October 2002

