
DEVELOPING A CONTROL SYSTEM FROM A DIVAN BED
G. Milcinski*, M. Centrih, J. Dovc, M. Plesko, G. Tkacik, Cosylab, Ljubljana, Slovenia

Abstract
A dream thought to be made possible by Internet – to

develop at home, to manage projects from anywhere in
the world - should become a reality with high speed
connections and new "productivity" tools. Did it work for
you or do you find yourself clogged down with hundreds
of unread e-mails and the ones read sorted (seemingly not
enough) into several tens of folders on the basis of
severity, projects or people? Our experience shows that e-
mail collaboration is ineffective with a group of five
people or more: tasks are left undone and messages are
lost. Two solutions are possible: either to use a
commercial package for project management, which
always has "that crucial feature missing", or to adapt an
open source application for your needs. We opted for the
later and modified Request Tracker [1]. The article is
about this tool and our adaptations, which integrate it with
automated build procedures, web page generation and
other e-management tools all backed by an SQL database.
We present a sample project flow from receiving an order
to delivering a product. The system works with a group of
students and their professional results satisfy the most
demanding customers coming from Europe, USA and
Japan; therefore we believe it to work for a group of
responsible programmers as well.

1 INTRODUCTION
There are two possibilities to make a living with

programming – selling software licenses or getting paid
for individual projects. For the first option a company of
three is enough (director, secretary and a plant), but the
second one demands a cooperation of many people – at
least a (usually very demanding) customer and
programmers themselves; nine times out of ten a presence
of a project manager is unavoidable but sometimes there
is also necessity of customer relations manager (CRM),
middlemen and other people. All of them must know
exactly what they want and have to do. They have to
know also, what the other members are doing. Here we
come to the first decision – who needs to know what? To
keep the customer satisfied, he has to have detailed
insight in a progress of the project, but some details have
to be hidden from him (there is no need for his headaches
all the times something goes wrong); the programmers
would also drown themselves while reading a bunch of
emails. A project manager probably knows most but
definitely not everything. So how can we achieve
sufficient flow of information between project members?
More often than not there is a network of dependencies in
the project, as one part is a precondition for the other.

Surprisingly, many programming companies (especially
the smaller ones) still solve the problem by simply
placing all programmers in one room. Anytime you need
someone, you can call him instantly. Is this really
productive? These interruptions often distract the people
from their normal duties. Moreover, although the
communication is as direct as it can be, it does have its
drawbacks: the knowledge is transmitted but not shared
with other people; solutions are found but also reinvented
time and time again. And on top of everything, small talk
about your neighbour’s wife soon dominates the
discussion.

One of our programmers said once: “it is funny to work
at home – you work longer, but you are still spending
more time with your family.” Working at home appeared
to be effective enough that a small group of students of
physics, computer science and electronics students
developed a complete control system for the ANKA
accelerator in Germany. The atmosphere was apparently
sufficiently stimulating – the majority of this group
formed the company Cosylab [2], which is now
cooperating in international large-scale projects.

It is obvious, that this type of working demands
professional methods and project management tools. This
article is therefore a fairy tale about a divan bed, a plant,
the net and a person behind a computer.

2 A FAIRY TALE (OR A TRUE STORY?)
 Behind nine mountains and somewhat less than nine
oceans, but certainly not such a long time ago, a contract
of cooperation with some distant company of non-English
speaking country has been signed. The project
management began.

2.1 Mailing Lists
 Two mailing lists have been activated. The first one is a
so-called external mailing list, the participants of which
were the customer, CRM, project manager, interpreter
and all important project members. It is used to keep
customer up-to-date on the project progress and to consult
with him on project details. The other mailing list is
internal – recipients are project manager, all project
member and also the interpreter. A content of this list is
more tactical - discussions about how to handle this or
that specific problem. A mailing list with exactly defined
senders and receivers and with archived conversations is
much better than a simple e-mail. By our experiences two
mailing lists per customer are enough. In case of one
mailing list per project (as opposed to one per customer,
which may have multiple ongoing projects) confusion
would arise, since it would be unclear as to which mailing
list to use for a given problem – especially because

*grega.milcinski@cosylab.com

certain issues span multiple projects anyway. If a need
appears (for bigger projects), it is anyway trivial to
establish a special list.

2.2 People, time and responsibility
A bunch of e-mails between CRM and the customer

quickly result in an agreement for the first project. As a
counter argument to the “ideal software development
cycle”, we claim that often customers actually don’t know
how to effectively formulate all their wishes and requests
– here is where we can help by drawing upon our long-
term experience with the needs of physics community. At
that moment at the latest a project manager is assigned to
the project, and one of his/her first tasks is to estimate the
time needed to get the work done. After he estimates the
time needed for the work done, an offer is created. Every
offer is also archived in the SQL database, where it is
available for further use.

2.3 Request Tracker
After offer is accepted, the game begins. Under
supervision of the project manager a project queue in
Request Tracker (RT) is generated, project members are
selected and proper rights assigned to each of them and
also to the customer (each customer can see tickets only
for his projects). For easier ticket submission and further
replies a special e-mail address is created. In such a way,
a client can send a feature request simply by e-mail. After
the ticket is created it is automatically assigned to the
project manager (if not specified otherwise) who then
reassign it to someone else and also specifies priority, a
time needed for the ticket resolution, a date and some
other properties (which can be defined for each project
separately).

2.4 To-Do Lists
Two of RT’s features are linking and merging tickets.

You can set ticket’s parents, children or simply merge
two tickets into one. We used this system to integrate our
To-Do lists into RT system.

2.5 Ticket’s Life-cycle
What is happening with the Ticket after its creation?

RT informs the owner and the project manager. Both of
them (and also ticket creator and some other authorised
project members) can later reply to the ticket (using web
form or e-mail) to report a progress being done, to answer
to the ticket creator or something else. RT then kindly
sends report to all ticket watchers (except the one, who is
writing a report) and another great thing is that each of the
recipients gets different mail, if there is a reason for it (we
do not want people to get bombed with too many
information). An important option is the ability of
programmers to specify the time needed for task
completion and the time actually spent working. In that
way project manager gets overview about progress and
developer’s available time.

2.6 Activity Log
RT shows all their beauty and applicability as Activity

Log. By properly selecting the search criteria, we can find
out who worked on which project and for how long. It is
also possible to make totals of time spent on a project, or
of the time spent by one programmer on all projects and
so on. We can also ascertain how long did it take to finish
a project and how much money do we owe to individual
programmer (students are paid per hour for example).

2.7 Concurrent Versioning System (CVS)
During the implementation cycle code has to be

continuously synchronised with CVS [3]. We are using
Eclipse [4] and other CVS specialised tools like
TortoiseCVS [5] to archive data and to get insight into
previous versions. We keep no binary, compiled or auto-
generated files in CVS – just source code and
documentation in XML format. Backups of the complete
repository are being made once a day so as to avoid any
nasty surprises.

2.8 Bug Tracking Tool
Not making any bugs means not working at all. That is

why all projects have to be tested – first using automatic
test procedures, so called modular tests, and after that also
by hand – manual testing cannot be avoided, especially
for GUI panels. All bugs are written into database, which
is just one of the RT’s queues. Our clients use the same
interface if they discover any error.

2.9 Documentation
Our definition of a finished task is a program that

passes all accompanying modular tests and is equipped
with javadoc and the user’s manual (that is a minimal
documentation requirement). Documentation is written in
XML format and it is transformed with a help of XSLT
transformation and ANT scripts into HTML and PDF
format. We defined our own XML tags to make writing
easier (we all know that writing of the documentation is
the hardest part of programming) and to achieve
professional appearance. All documents and their
abstracts are listed in the SQL database, which is
automatically updated from the CVS repository. The
beauty of XML documents is also that resources are not
duplicated. In contrast to the binary files this fact keeps
the CVS repository’s total size smaller.

2.10 Night Builds With ANT
Every night (or as necessary) ANT [6] scripts are run.

In the process all specified projects (configuration is done
using SQL database) are compiled, programs are executed
and tested with modular tests, javadoc and other
documentation is generated. On successful builds a
project web page is automatically generated. The build
procedure creates a web-accessible log file and stores the
build result into the SQL database. An important
achievement is that there is only one, generic, ANT build
script for all projects and customers. All project-specific
details (like project dependencies, external jars needed for

the project to compile, digital keys for jar signing etc are
stored in SQL. There are always at least two versions of
builds existing – the newest build and the last successive
one before that.

2.11 Project Web Pages
These are automatically generated and provide access

to the newest versions of programs and their data, such as
information about developers, versions, dependencies to
the other programs (other projects or some 3rd party
software) at all times. Beside that there are also direct
links to project documentation and javadoc. Please note
that these, so called project pages, are created for the
convenience of developers and testers and not for the
customer (unless he is cooperating in developing – a
Visual DCT [7] is such project) – nightly builds are not
official releases but rather intermediate versions. Because
they contain technical details, such pages would do more
confusion than good for the external user.

2.12 Customer Web Pages
In contrast to the above-mentioned technical project

pages, customer project pages are generated under
supervision of the project manager after some integral
part of the project has been finished. Just some clicking
and PHP scripts are enough to create a page, where our
customers can find information and news about the
project, the latest official release (and some old ones if
there is need for it), javadocs, documents in HTML and
PDF format, installation executables etc. There are also
links to related articles and presentations if some user
would want to know some more about the technology
deployed. With a system of permissions each user can
only see projects related to him/her and some public
related project (for example Visual DCT), which are
developed for common good and are being funded on a
per-feature request basis by different institutes.

 2.13 Internal Pages
To integrate all of the aforementioned tools into a

quickly accessible project management package, we are
using internal pages – where information about active
projects, project managers and members, customers, etc.
can be found. There are also personal data of all our
employees – address, e-mail and mobile phone number
are indispensable in our style of working.

3 FUTURE DIRECTIONS
3.1 RT Analyser

RT has quite clear program architecture and very well
defined database structure but it is written in Perl.
Therefore we are developing a modular tool (in Java)
which accesses directly to RT’s database, creates tickets,
searches and does some other fun.

With RT Analyser a project manager could simply
(easy as writing in outline mode in MS Word) define
tasks for a part of the project and the program would
automatically generate To-Do list – RT tickets with the

proper parameters set, above all the others with link to the
Master To-Do ticket for specific To-Do list. You could
also monitor the progress – there would be a list of tasks,
where resolved would be in green colour, opened in
yellow and the untouched in red.

4 CONCLUSION
The answer to the question, which could appear while

reading this paper – “What is a role of the plant in this
story?” – is: “Actually none; well maybe to create a cover
for the director, who is spending time on Hawaii with his
notebook and supervising the work of his employees
simply by using RT, RT Analyser and browsing the web.“

The elegance of such a system is that the description
(and result) of almost every action is recorded. All
information is well structured and therefore easily
accessible – either via Web, our tools or e-mail. RT’s
possibility to process e-mails is maybe the most important
of its features – most people feel most at home with e-
mail service. Sometimes it is also easier to write an e-mail
than to visit some web page, login and fill all necessary
fields. This solved our problem with engineers that had
preferred to write an error report into a logbook and stuck
a screenshot along it, rather than submitting a bug into
Bugzilla. There is no need to say that the book was in this
other, distant country.
Is there no need for company offices, apart from the
marble and glass that makes the owner feel rich?
Actually, there is. Some meetings in person are still
necessary – to end the long-lasting debates that keep
persisting or reappearing on the mailing lists, to confront
the people and to confirm important decisions. Usually
one meeting in a week is enough. There is one time also,
when a bunch of people sitting together is stimulating –
when a project is reaching its deadline. In such times our
room is full of people testing, compiling, repairing code,
generating and helping each other. A so-called last minute
panic is at least twice as effective as normal work. Maybe
there is a concept alternative to ours – to be always in a
state of last minute panic, but most probably people
would get used to it and this effect would disappear.
Therefore we replicate it only when it is really needed.

Another potential problem of working at home is and a
lack of working habits. People have to be really serious,
motivated and devoted to the company to adapt to this
type of working. But this is already another story [7].

5 REFERENCES
[1] http://www.bestpractical.com/rt/
[2] Cosylab, http://www.cosylab.com
[3] http://www.cvshome.org
[4] http://www.eclipse.org
[5] http://www.tortoisecvs.org
[6] http://jakarta.apache.org/ant
[7] http://visualdct.cosylab.com
[8] J. Dovc et al, “A Guerilla Approach to Control System
Development,” ICALEPCS ‘01, San Jose, November
2001.

