Introduction of COACK to the HIBP Control

NIFS - National Institute for Fusion Science <u>H. Ogawa</u>, T.Inoue, Q.Tsukada, M.Yokota, M.Kojima, J.Kodaira, A.Nishizawa, T.Ido, Y.Kawasumi, S.Kato, K.Yamazaki

KEK I.Abe, T.Kosuge, K.Nigorikawa

LNS - Laboratory of Nuclear Science, Tohoku Univ. M.Mutoh, Y.Shibasaki

Large Helical Device (LHD) Project

- The mission is to develop a scientific basis for stellarator fusion reactor.
- The important feature is a high magnetic field(3-4T) with one of the largest super-conducting magnets in the world.
- The experiment was started in spring in 1998.

What is the HIBP?

- HIBP = <u>Heavy</u> lon <u>Beam</u> Probe
- One of the about 50 diagnostic devices which belong to LHD.
- The purpose is

to analyze the local electric field inside the fusion plasma and to research the plasma turbulence of the density and the electric field.

HIBP control system

Vacuum System

Requirements(2)

Experimentoball

We decided to introduce COACK!!

ding

What is the COACK? (Component Oriented Advanced Control Kernel)

Features

- PC based operation management system
- Component oriented system by using DCOM
- > Easy development by using Visual Basic

Main Functions

Please refer to the paper: "Recent status on COACK project" I.Abe, M. Mutoh, et al, PCaPAC2000, Hamburg, October 2000.

What is the step to Introduce COACK?

Preparation

> Only the Visual Basic education is required.

Three steps to introduce COACK

- > Step1: Server and Client Installation
- > Step2: Make a I/O table and regist it to the server
- Step3: Client programming (sample program is available)

Step2: Make a I/O Table and Regist into server

Step2: Make I/O Table and Regist into server

COACK Server

HIBP

I/O table

I/O Controller

COACK Client (Operation Terminal)

Independent from I/O interface RS-232C, GPIB

Virtual Machine

Advantage of the virtual machine

Step3: Client Programming

Step3: Client programming (Visual Basic)

Step3: Programming (Visual Basic)

Example of set value function

Private Sub cmdSetCache_Click() 'Copy the input value to the property of the CustomComButton ccbSetCache .PropertyValue = txtSetValue.Text

'Execute set value
 ccbSetCache .cmdButton_Click
End Sub

That's all of the client programming!!

The <u>get value</u> and <u>receive event</u> functions are also developed same way.

Step3: Programming (LabVIEW)

HIBP Control System

10 Operational Windows

9 I/O Controllers

(Including 2 Virtual Machines)

Conclusion

We have developed the COACK system along with the construction of HIBP devices. We completed the development within 6 months and

started the service for available components.

- We achieved integrated control, unitary data management, remote control and improvement of extensibility and flexibility.
- We recognize that the COACK is utilizable not only for an accelerator field but also a nuclear fusion field.
- The introduction to other control system is considered in the near future.