
DESIGN CONSIDERATIONS FOR INTEGRATION OF WIDE RANGE OF
CONTROL SYSTEM COMMUNICATION PROTOCOLS IN CROSS-PLATFORM

FRAMEWORK IN THE EXAMPLE OF EPICS AND TINE

Aleš Pucelj*, G. Tkacik, R. Šabjan,

J. Stefan Institute and Cosylab, Ljubljana, Slovenia
Abstract
Accelerator community offers wide range of low-level
communication protocols, from minimal solutions such as
EPICS channel access to CORBA object model. This
makes it natural to attempt their integration into single
framework. Such generalizations are inherently
susceptible to performance handicaps arising from either
inappropriate abstraction or platform dependence of
individual protocols. We present our experience in this
area along with solutions and open questions to the
problem.
This article presents examples of integration of EPICS
channel access and TINE protocol into Abeans
framework using pluggable model. Focus is placed on the
user/developer aspects of such implementation outlining
the advantages of such approach. First, we show how
simple access to the control system can be made in a
general way. Comparison of different approaches shows
the advantages of using a single interface and benefits for
the developer. Next, we look at examples of actual plug
implementation and the common points between the
systems. Lastly, performance impact is analysed. This is
especially important, since our implementation is Java
based, which can under circumstances be slow and
memory consuming. Several methods are presented that
eliminate this overhead. This is confirmed with actual
examples.

1 INTRODUCTION
Development of physics application should allow the

physicist to focus on solving the problem without looking
too much into the details of the control system. When
dealing with a single control system on all levels, this is
not a great problem. An example of such approach could
be MEDM and EPICS. In a case where there is need to
access several underlying implementations a framework
of some sort is required. Design of such framework turns
out to be of critical importance, since it should provide
balance between simplicity of use, extensible control
system support and adequate performance. An example of
such framework could be CDEV. It establishes naming
hierarchy and property relations using C and C++
structures with optional Java GUI.

Abeans framework presents one such solution. This
article focuses on performance issues and shows that
development of such framework is feasible without
sacrificing performance.

2 REQUIREMENTS
A useful framework should provide the following

features.
- Simple to use
- Extensible
- Minimal overhead

Simplicity of use implies that development of application
using such framework should differ as little as possible
from the control system specific approach. Since this is
not possible by definition, compromise must be made in
such manner, that it minimizes the time required to learn
the use of framework with existing knowledge.
Framework must also allow further extensions to support
different control systems. This includes not only
particular communication protocol, but also structure of
the control system and the variables therein. All of these
features add to the overhead caused by the abstraction and
effort should be made to minimize it.

3 ABEANS
Abeans is a framework that attempts to address all of

the mentioned requirements. Implementation is Java
based and is therefore fully object oriented.

Applications (GUI)

Modeling Layer

Plug
EPICS

Plug
TINE Plug…

Figure 1: Abeans overview

Figure 1 shows simplified view of the Abeans design.
GUI represents existing visual components (slider,
number field, gauge, table), which issue requests to the
modelling layer. Modelling layer is where actual requests
for data from control system are made. Application
requests are formulated and passed to the appropriate plug
which performs the actual data transaction.
Application developer would either use the existing GUI
components or connect to the modelling layer directly.

* ales.pucelj@cosylab.com

This design allows I/O abstraction on the modeling layer
level. Current design uses request/response approach to
handle communication. Modelling layer issues request
objects and waits for one or more response objects. Each
request contains information about the data source, type
of operation (get/set/connect/…), requested data type,
time stamp and other control data. Modelling layer is also
responsible for queuing of these objects, error handling
and synchronization to ensure thread safety.
Since multiple control systems can be accessed at the
same time, it is important to establish unambiguous
naming convention for individual I/O points. This is
realized using URI (uniform resource identification)
scheme, which is defined in RFC 2396 document. This
approach proves sufficient to uniquely address any
resource in a control system, where each I/O point is
uniquely identified by a string or string representation. An
example of the actual value of such URI would be:
abeans-EPICS:///PBEND_M_01_current?get
or
abeans-TINE://ns.desy.de/DESY/BENDS/PBEND_M_01
/current?get.
One important aspect of this naming convention is that is
used only internally to communicate between modeling
layer and plugs. URIs are composed automatically, when
requests are generated. This way, the actual information
the application developer must provide does not differ
from the information required by proprietary
implementation in a particular control system. What must
be considered is the overhead imposed by such name
mapping. Each name must be first transformed into URI
and later decoded by the plug, whenever requests are
processed. As explained in plug implementation, this
introduces much smaller overhead than expected.

4 PLUGS
Plugs are the most critical component of the entire
framework, since they handle all of the communication.
They must therefore support all requirements of the
framework and perform them using existing
implementations of communication libraries. Since they
are expected to be a bottleneck in entire framework,
especially under heavy load, care must be take in
implementation. There are several issues that must be
addressed. First is the resolution of name from the URI
into appropriate name to be passed to communication
protocol. Second is handling of connections. Abeans see
the communication as state machine: data channel is first
established, communication is performed and channel is
closed. This may not necessary be the same as the
underlying implementation.

4.1 EPICS Plug
EPICS support has been realized through JCA, java

wrapper for native channel access libraries written in C.
JCA has turned out to be reliable, the only problem arose

from underlying implementation, which is single
threaded. To allow access to the EPICS database using
JCA the following functionality had to be added to the
plug. When a request to access a channel is made, new
process variable (PV) object must be made, which
implements the actual communication. To avoid
unnecessary object creation, PVs are stored in a hash
table, where they are associated with channel names. If
several requests are made to the same channel, same
object will be reused. Also, since these objects are not
created directly by application developer, this table is
used to free the objects when they are no longer needed.
Searching of hash table proves to be an efficient
operation, capable of handling even large numbers of PVs
without causing delays.

EPICS defines many primitive types, some of which
cannot be explicitly represented in Abeans. When a
certain variable is first accessed, it’s type is obtained from
the EPICS database and matched against supported types.
If the type is unsupported, it is converted according to the
following table:

Table : EPICS – Abeans type conversion

EPICS type Java type

Double
Float Double

Int
Byte
Short
Enum

Long

String String

This conversion is made when passing values from the
plug to the Abeans; when sending data through channel
access, the original EPICS type is retained.
All errors that might occur during communication are
handled by the plug and are reported to Abeans as Java
exceptions.
Processing required by the plug is minimal and quite
efficient. The only overhead is introduced by type
conversion and wrapping of data types passed to JCA.
To test the performance, get and set requests were issued
on a single machine hosting both Abeans client and
EPICS server. Single machine was used to avoid network
lag affecting the measurements. Average time required to
complete a single operation was 1ms, where
approximately half of that was spent performing the JCA
call. This indicates, that despite measurable impact of the
Abeans framework, it represents no significant slow
down, since real-time response is not expected anyway.
Also, in a normal network environment, overhead of
Abeans would be insignificant. Interestingly, the time
required to complete several requests with a single call
(EPICS Channel access allows queuing of requests) did
not take any more time (for a small number of requests).
This leads to a conclusion, that 1ms per call can be
considered worst-case scenario.

4.2 TINE Plug
Implementation of TINE plug has turned out to be much
simpler. It uses java implementation of TINE protocol,
which is already object oriented. There is also no need to
perform any data conversion, since that is handled by java
and its wrapping of types in objects. Slight disadvantage
compared to EPICS and JCA is the parameter passing to
TINE calls. These require creation of several new objects,
which increases memory footprint of each call, but since
this is the design of the library itself, plug implementation
is no different than any use of the library would be. There
is also no need for specific connection handling, since
persistent connections are not directly implemented in the
library, at least not at the API level. Performance of the
plug is the same as with EPICS, where the actual
overhead of each call is minimal. Memory footprint per
each call is larger, but since this is not an issue of the plug
it is not considered as overhead.

5 CONCLUSIONS
Abeans framework offers immense functionality, some
already implemented and some supported through
extension mechanisms, all of which is beyond the scope
of this article. Issues presented here deal with some
specifics of actual data transfer and communication and
despite apparently complex implementation the overhead

introduced by Abeans compared to native libraries is
minimal, as long as slow-time control is sufficient. Since
performance is not an issue, extensibility becomes the
greatest advantage. Generalized access to underlying
resources simplifies the handling of additional services
and reduces code duplication that would be otherwise
required for each implementation. Another advantage
comes from the fact that a single solution works for all
supported systems which reduces amount of testing
required.
I must also thank DESY Hamburg and Oak Ridge
National Laboratory for opportunity to work with these
technologies and their support given during that time.

6 REFERENCES
[1] Jeffrey O. Hill, “EPICS Channel Access Reference
Manual”, March 1995
[2] http://desyntwww.desy.de/tine
[3] J.Dovc et al., “New Abeans for TINE Java Control
Application”, Proceedings ICALEPS’01, 2001.
[4] I.Verstovsek et.al., “The New Abeans and CosyBeans:
Cutting Edge Application and User Interface
Framework”, Proceedings PCaPAC’02, 2002
[4] Abeans and CosyBeans documentation,
http://www.cosylab.com
[5] http://kgb.ijs.si/KGB/articles.html

7 APENDIX A

Code Examples:
These examples show the differences and similarities between different approaches.
EPICS Abeans TINE Comment
status = ca_search(cname,
&chan_id);
status = ca_pend_io(2.0);

ApplicationContext ac;
try {
DoubleChannel dc =
 new DoubleChannel();
dc.setRemoteInfo(ac.createRemoteInfo(name));
dc.connect();

 Creation of
channel

i = ca_field_type(chan_id)
status = ca_get(i,1, chan_id,
value);
status = ca_pend_io(5.0);

value = dc.getValue();

Object valueHolder =
 TINEType.getReadData(type, size);
TDataType dout =
 TINEType.getReadTDataType(type,
valueHolder);
TDataType din = new TDataType();

TLink link = new TLink(devName,
propName, dout, din, TAccess.CA_READ);
int status = link.execute(1000);

Reading
value

status = ca_put(i,1, chan_id,
value);
status = ca_pend_io(5.0);

dc.setValue(value);
catch (RemoteException e) {…}

TDataType dout = null;
TDataType din =
 TINEType.getWriteTDataType(t ype,
value);
TLink link =
 new TLink(devName, propName, dout, din,
access);
int status = link.execute(1000);

Setting
value

