
The Babylonization of Control Systems

P.Duval, Z. Kakucs – DESY; M. Kadunc, I.Kriznar, M. Plesko, A. Pucelj, G. Tkacik – JSI and
Cosylab, email: mark.plesko@cosylab.com, http://www.cosylab.com

Abstract

The standardization in PC and network technology
has produced a distinct (for want of a better term)
"babylonization", where islands of control exist in
perfect ignorance of each other even though they might
belong to the very same facility. This is due in part to
commercial equipment, which often comes with its own
control software, and to the many excellent but
different solutions for control systems, which have been
developed in the accelerator control community.

A control systems integrator frequently has to make
decisions with long-term and far-reaching
consequences. Often a pragmatic approach is to allow
resourceful engineers to use the best available tools to
solve controls problems and then to integrate their
solutions into the control system. It usually turns out
that integration, if not done systematically, amounts for
the largest part of the work. There are usually many
ways to do this, for instance defining a software bus,
using gateways, or simply allowing apples and oranges
to peacefully coexist. In this paper, we will examine
most of the available tools in our community for the
integration of control systems, detailing the merits of
each approach as well as some popular controls
systems and components. We will demonstrate that it is
possible to mix them in order to benefit from the best
part of each.

1 AVAILABLE CONTROL SYSTEMS
There are several competing control system (CS)

components, who look very similar but in fact address
quite different issues in different ways: EPICS,
COACK, TINE, DOOCS, ACS, TANGO, ACOP,
CDEV, Abeans, CosyBeans, XAL, Databush, just to
name those that are advertised as packages1.

The different coverage of control system packages is
shown in figure1. It cannot emphasize the features and
services that are provided. We have therefore prepared
a table, with input from authors and users of the

1 For the sake of example we will be mentioning only some
systems This choice does not represent an endorsement by
the authors, nor is it any reflection on anybody else's system.
As this paper concentrates on control systems, we will also
not further discuss XAL and Databush, which are packages
for machine physics calculations. They deserve a paper on
their own.

respective packages. The table itself would exhaust the
page length requirements of the proceedings. It is
nonetheless illuminating and we therefore refer the
reader to reference [1] for a full comparison and allude
to certain aspects below.

Figure 1: A comparison of control system packages
and the layers they cover.

To illustrate the difficulties (and dangers) of making

comparisons such as these we note that, just comparing
TINE and EPICS is already like comparing apples and
oranges. TINE is more of a communication protocol
and should be compared to channel access. Note also
that the EPICS database is really at the lowest level of
the control system. One should be aware of this point,
because when people say EPICS, they mean the whole
lot of very unrelated things like the database, the
channel access protocol and the MEDM GUI tool. The
database is a viable idea and - apart from some historic
glitches that are being addressed in the upcoming
versions, like the short limit for names, poor debugging
options - a useful approach for I/O integration. Such
low-level IO integration is frequently not found in CS
packages, DOOCS being a notable exception, where
similar concepts are also in place. The problem for a

EPICS

DOOCS

COACK

CDEV

TINE

chan. acc.

ACS

 driver data
SERVER

commu-
nication

 API visual support
CLIENT

ACOP

Abeans CosyBeans

TANGO

MEDM

JDM

DDD

CS integrator might be the EPICS extensions, which
one is forced to use by taking EPICS or one is forced to
develop with the limited API that is available.

As we see, each package has certain advantages,
unmatched by any other package. So, apart from simply
allowing religious freedom to reign, where each
engineer can use his preferred package (but the systems
coordinators nonetheless have to get the accelerator to
operate), there are actually good reasons to mix the
control systems in order to get best-of-breed services
and applications.

2 TRANSLATORS OR INTEGRATORS?
When the control system coordinator is faced with

the problem: “How do I make my apples look like
oranges,” he can take one of three tacks. 1) Write an
‘apple-to-orange’ gateway, which is a separate process
utilizing the client/server APIs of both systems. 2) Use
client-side ‘apple-plugs’ so that while client program
developers think they are talking to oranges, they are
really speaking native ‘apple’. 3) Use server-side
‘orange-plugs’ so that server IOCs think they are being
addressed by apples but are really speaking native
orange.

Whereas each approach might have its time and
place, most benefits occur for case 3 (server-side
plugs).Here one knows that the server-side systematics
(local alarm server, local history server, queries, etc.)
are guaranteed to be there. The data in this case are as
close to the source as possible.

Client-side plugs are also attractive and perhaps the
next best thing. However, if the server-side systematics
are not covered, you come up empty. Gateways can
also solve data acquisition problems but tend to bring a
host of intermediate problems with them (e.g.
connectivity problems might be more difficult to locate
if there is another link in the chain).

Also note, in the case of client-side plugs, if the plug
you are using doesn't cover the functionality of your
system, you lose! For instance, with TINE, data transfer
occurs through data “links,” where the access mode can
be specified. Thinking in terms of “monitors”, you can
specify the kind of monitor: Do I want 'send on
change'? (the classic EPICS monitor), or do I want
'send on poll'?, or do I want the monitor as a network
subscription? (a real multicast to my multicast group),
or do I want the monitor to go over a persistent TCP
connection? With client APIs such as CDEV, with
simple monitorOn() and monitorOff() methods, if
would be difficult if not impossible to define these
different categories of monitors as a developer .

In general, plugs allow you to use your preferred
applications, but you are limited to existing services
and tools, but this is exactly the area, where everybody
has weak points. Wouldn’t it be nice to use the best

tools for each single application? That requires just a
translator (server-side plug) to each CS package at the
lowest possible level. This might present a
psychological barrier for some control system
coordinators, as it might at first be perceived as a
potential source of instability or a security breach.
Where servers are not more feature-rich than the plug, a
less intrusive way of adding features would in any case
be through client-side API plugs.

2.1 EPICS, TINE and DOOCS Translator
Suppose we want a TINE view of the EPICS IOCs in

the system. We can
1) run EPICS2TINE directly on the IOC or
2) set aside a dedicated machine which interfaces

to the IOC via channel access and runs a TINE
server process for the TINE view.

The first case doesn't speak channel access at all and
accesses the EPICS database directly (and is thus a
translation layer on the server) and the second case is a
true gateway. In a similar vein, the current DOOCS
servers are bi-lingual offering the traditional SUN RPC
interface as well as a TINE interface. Indeed DOOCS
can run entirely on TINE (or rather TINE can run in a
DOOCS context). This approach is in contrast the
external gateway approach traditionally used in the
past.

With EPICS2TINE, we have also elegantly solved
the 16 Kbyte barrier (i.e. 4000 floats) of the old EPICS
release, which has bothered us here at DESY, while
using EPICS to handle certain transient-recorder
archive channels (which have arrays of data which far
exceed this). Thus EPICS IOCs are immediately
available to say DOOCS DDD clients. Using
TINE2EPICS, the DOOCS IOCs are likewise available
to EPICS MEDM clients. Pure TINE clients can of
course access either. Likewise, running Abeans with a
TINE plug will see all IOCs as TINE servers
irrespective of their parentage.

2.2 Abeans plugs for TINE2 and EPICS
The Abeans and CosyBeans offer many advantages

and features for developing client applications as
described in detail in [2]. Any CS protocol and model
can be attached to Abeans through their pluggable
interface. Cosylab has thus developed a TINE plug for
DESY and an EPICS plug for the SNS (Spallation
Neutron Source at the Oak Ridge National Lab).

DESY is interested in Abeans mainly because it
provides a rich framework for running TINE client

2At DESY Windows GUI applications make use TINE on
ACOP or a native Visual Basic API In the true
“babylonization” spirit, ACOP has in fact also been fitted
with both TINE plugs and Channel Access plugs, but is much
simpler in scope than Abeans.

applications on non-Windows machines, while keeping
access to the full TINE API and services. SNS first
developed XAL, which is both an API to EPICS and a
machine physics package. SNS now wants Abeans as a
layer between XAL and EPICS, because many of its
capabilities are not presently available in XAL, nor are
they being pursued due to limited manpower.

Abeans allow different models to represent the
structure of the control system. Models use plugs to get
data from a specific control system. At DESY and the
SNS, we used the Abeans “channel” model (i.e. a
narrow interface access model), which consists of
namespaces and channels, to create a plug to the TINE
Java class, or to the JCA EPICS class, respectively.

The following general guidelines were adopted when
deciding how to resolve the integration in both cases:

1) Full encapsulation: Abeans are built as an
application framework and data access layer. Abeans
also define the Channel concept, both for TINE and
EPICS; so no details of the TINE or EPICS layers are
visible through Abeans.

2) Retain functionality: However, Abeans must
provide the full CS functionality to the application
programmer, not just a common subset. This has been
solved with runtime plug-in services. Abeans provide at
least one CS-independent default implementation,
while allowing the addition of a plug-in to access a
certain CS-specific remote service, such as the TINE
archiver, an ORACLE database, etc.

3) Generic vs. specific: Generic solutions to given
problems are preferred. Thus a configuration system
that can save to any target (local or remote file system,
XML or other format) is preferred to an
implementation that is tied to a certain technology /
approach / library.

4) Standard Java solutions: If standard Java solutions
become available for problems addressed by either
Abeans, TINE or XAL, these should be used, even if it
means jettisoning tried code. An example is the Java
logging API introduced in JDK1.4.

5) Code decoupling: TINE, EPICS and XAL
functions have been introduced into Abeans. This
corresponds to merging functionality, i.e. transferring
to Abeans the application framework from TINE and
XAL. XAL would then remain as a pure accelerator
physics package. This approach produces higher
quality code and there is less of it to be maintained.

2.3 A Future Scenario
The “best of all possible worlds” surely means

different things to different control systems
coordinators. Thus there are many examples of mixing
and matching that are not only possible but make good
sense.

Consider the following: We integrate VME I/O cards
with EPICS (because it has the drivers), use TINE as
the access protocol (for mulitcast capability), DOOCS
DDD or COACK (for developing synoptic GUI panel),
and ABeans/CosyBeans (for a deviceTable). One can
still display the EPICS alarm table via channel access.
Any number of applications using Java + ACOP, or
Abeans, or MEDM or Visual Basic + ACOP could run
independently and in harmony.

Further possibilities include using advanced features
such as the TINE archiver, ACS logging, Abeans
resource loading, etc. We should think more about the
services of our systems that could be used in a generic
way by other control systems.

There is not much need for competition on the
system level – all CS package developers should rather
work hard to get good general-purpose applications and
tools. Because this is the area, where we are the
weakest.

3 CONCLUSIONS
Maybe in the near future, we won't have to compete,

but can choose a component that is best for a particular
problem thanks to the integration tools such as
TINE2EPICS or Abeans plugs. To return to the apple-
and-oranges metaphor: choose your favorite, but if you
have to mix apples and oranges because you have
apples but someone has this great orange from which
you could really benefit, then it's no big deal when
there are ready solutions to make an orange look like an
apple.

Staying with metaphors: there is the 'tower of
Babylon' metaphor, of 'control systems managers'
arrogantly trying to build the whole system from their
preferred CS package by foisting their will on others,
and watch the whole thing collapse into a pile of
rubble.

4 ACKNOWLEDMENTS
The KGB/Cosylab team thanks the institutes DESY

and the ORNL for hosting us and showing continuous
support for our ideas.

REFERENCES
[1] http://kgb.ijs.si/KGB
[2] M. Kadunc et al., The Object Oriented Approach

to Control Applications and Machine Physics
Calculations with Java Technology, ICALEPCS01,
San Jose 2001
I.Verstovsek et al., The New Abeans and
CosyBeans: Cutting Edge Application and User
Interface Framework, PCaPAC02, Frascati 2002.

