
Remote control system of VME crates based on CAN-Bus
in PITZ experiment in DESY Zeuthen.

K. Abrahamyan$,I. Chachkhunashvili&, G. Trowitzsch,

DESY, Zeuthen, Germany.
$on leave from YerPhI, 375036, Yerevan, Armenia.

&on leave from HEPI, 380086, Tbilisi, Georgia.

Abstract

At many facilities in DESY, including PITZ
(Photo Injector Test facility at Zeuthen) or TTF (Tesla
Test Facility at Hamburg), lots of VME crates are used in
control systems. Sometimes it is necessary to switch
crates ‘on’ or ‘off’, to generate system resets or to check
the current status of crate like temperatures, power
channels, voltages and currents, etc.. Normally the
operator has to do it directly on the control panel of every
VME crate, but it is not convenient or simply impossible
if the crate is located in an area with restricted access.
Therefore it is necessary to have uninterruptible and
simultaneous remote access to control the VME crates.
On the basic level we decided to use the CAN-Bus
connection to the VME crates provided by the crate
manufacturer. It is a robust field bus supporting up to 127
nodes per segment. As the host platform a PC equipped
with a PCAN-PCI controller running Windows NT was
chosen, because the solution was cheap, easy to
implement and completely independent from the target
systems. The TINE Protocol [4] is used to integrate it into
the PITZ control system, to access it from different client
applications. A first Win32 based client application
provides all functions to monitor the VME crates and
control first parts. The most important functions are:
reading the status of a crate; switching power ‘on’ or
‘off’; changing fan speeds interactively; monitoring
temperatures, voltages, currents and errors.

1. Introduction

The Photo Injector Test facility at DESY Zeuthen
(PITZ) [1], as shown on Figure 1, was built to develop
electron sources for the TESLA Test Facility Free
Electron Laser (TTF-FEL) and future linear colliders.

 Fig.1: Photo Injector Test facility Zeuthen

VME crates are playing an important role in control
systems of many experiments and accelerators itself. The

task was to design and implement an efficient and simple
remote control system for VME crates, to monitor
parameters and to control the device. It becomes more
important for crates located at places with restricted
access near to the accelerator. The goal was to integrate it
into the common PITZ control system.

1. Hardware base

1.1 The VME Crates
Only crates from one manufacturer are used [2]. The

VME crate consists of power supply (UEP 4020), bin tray
(UEV 4020) and fan tray (UEL 4020). All components
are pluggable and easily to exchange. The fan tray
contains the CAN interface (Fig. 2). Using external
cooling a VME-control and monitoring module is
necessary to provide the remote control block.

Fig. 2

All crates contain the CAN-Bus based remote control
block in our installation and therefore a standard PCI
based CAN-Bus controller was chosen. We are using the
PCAN-PCI-Card manufactured by "PEAK-System
Technik" [3].

Figure 3 shows an overview of the crate remote

control system.

 Fig. 3

2.2 CAN-Bus controller

The card (Fig. 4) is equipped with the CAN-

controller SJA1000 and the driver 82C251. The
connection to the CAN-bus is done via 9-pin SUB-D
plug, whose pin assignments corresponds to the CiA-

recommendation DS
102-1. The driver of the
PCI card is only
available for Windows
9x/ME and Windows
NT/2000. The control
server application was
implemented on NT4 to
integrate it in our DESY

NT domain. We decided to use the TINE (Three-fold
Integrated Networking Environment) Protocol [4] as the
network transportation layer. It is easy to implement on
Win32 and a framework to create slow control application
server was available. Furthermore it was easy to integrate
into DOOCS (Distributed Object Oriented Control
System) [5] that is used at PITZ.

3. Software structure

 3.1 TINE Slow Control Framework

TINE protocol is one of base protocols used at
DESY. A lot of Slow Control Servers were and will be
developed for different tasks. We created a TINE based
Slow Control Framework on Borland C++ Builder. This
Framework saves time on developing the communication
part of the server and the programmer can concentrate on
developing device specific parts of code that can be easily
embedded into the framework. The framework contains a
list of objects that has to be assigned to the specific
“Device Controller” objects. All that has to be done is to
change constructor calling (if necessary) and to add
project files that describe the device specific objects. To
add new TINE properties to the server, one has to edit the
function “ServerEqpFcn”. This function processes TINE
messages on server side and one has to add properties to
the configuration file of the application. The
configuration file should be named like the application,
but with the extension INI. Furthermore it is used to
configure the device objects. The framework will take
care about registering the properties and the server itself
on the TINE Name Service (ENS). It also provides
function to simplify communication with the client, to
handle errors and to provide a debug window at runtime.

3.2 CrateServer(TINE Server).

Figure 5 shows the structure of the application.

Fig. 5: Basic structure of CrateServer

For each crate a device object (TDeviceObj) is

created. The properties are divided in two classes:
TChannels (currents/voltages for power channels) and
TDevProps (states, temperatures, fans speed, commands,
etc.). For TChannel we have also two types of objects:
TVoltCurr (to get voltages and current from the VME
crate, depends on the power channel) and
TOutputVoltCurrSettings (to get the exponents of the
float values of voltages and currents). The functions
CAN_Init(), CAN_Read() and CAN_Write() are used to
send data to or receive data from the PCAN-PCI Card
driver (Pcan_pci.sys) by using the dynamic library
PCAN-PCI.DLL. For CAN_Init() the arguments are the
speed of CAN-Bus (depends on the length of the CAN-
Bus) and type of CAN-Message (normal or extended).
CAN_Read() and CAN_Write() use a pointer to the
CAN-Message structure (TPCANMsg).

3.3 Client application (GUI)

The DOOCS Graphical User Interface based on

DOOCS Data Display (DDD) [6] is a simple example of a
client application (Fig. 6).

It shows five VME crates with the following data:
power state, temperatures, fans speed, voltages and
currents for three power channels. The power channel
configuration depends on the power supply of the
particular crate. It is adjustable by the configuration file.
In our case, from the 8 possible power channels only three
are used.

Fig. 6: DOOCS GUI

 The DOOCS GUI allows to protect functionality by user

name and password. In this
case, switching on/off was
restricted. Figure 7 shows the
authentication dialog box.
As the protection password
the users UNIX password is
used (PAM Authentication
Method).

4. Future developments

The following developments are planned:

• storing history data for some properties like
power states of crates, CAN Bus errors, etc.

• implementation of watchdog applications to
generate soft alarms for important parameters
like over-/under-voltage, min-/over-current,
temperatures, to act on hard error of crates and
to control parts like fans speed depending on
monitoring data

• improvement of existing client applications

5. Acknowledgements

The authors wish to express their gratitude to our
colleagues at PITZ and DESY Zeuthen, helping with
ideas and own experience. Philip Duval, author of TINE,
helped us a lot to include TINE support and to get it
running properly.

References

[1] http://desyntwww.desy.de/pitz/
[2] http://www.wiener-d.com/
[3] http://www.peak-system.com/
[4] http://desyntwww.desy.de/tine/
[5] http://tesla.desy.de/doocs/
[6] http://tesla.desy.de/doocs/doocs_gen/ddd.html

