

Review of U.S. Neutrino Factory Studies

Michael S. Zisman[†] Center for Beam Physics Lawrence Berkeley National Laboratory

[†]in consultation with S. Geer and R. Palmer

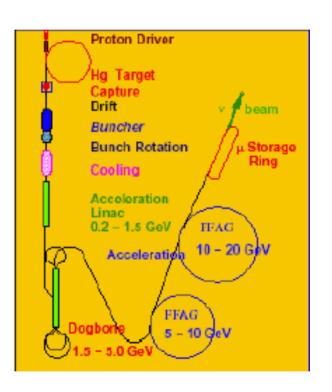
NuFact Working Group 3 Meeting-Frascati June 25, 2005

June 25, 2005

NuFact05 WG3 Meeting - Zisman

Introduction

- Neutrino Factory design still evolving worldwide
 - Neutrino Factory and Muon Collider Collaboration (U.S.)
 - Beams for European Neutrino Experiments (Europe)
 - $_{\rm o}\,\text{ASTeC/UKNF}$ studies of cooling and acceleration
 - Japanese Neutrino Group (Japan)
- Comments here based on experience from U.S. design studies
 - representative of what might be needed
 - should be taken only as an example
- Scoping Study expected to pin down ingredients and issues more precisely
 - as prelude to subsequent World Design Study


man

3

Neutrino Factory Ingredients

- Neutrino Factory comprises these sections
 - Proton Driver
 - primary beam on production target
 - Target, Capture, and Decay
 - $_{o}\, \text{create}\,\, \pi \text{;}\,\, \text{decay}\,\, \text{into}\,\, \mu$
 - Bunching and Phase Rotation
 - \circ reduce ΔE of bunch
 - Cooling
 - oreduce transverse emittance
 - Acceleration
 - $_{\circ}\,130$ MeV \rightarrow 20–50 GeV
 - Storage Ring

• store for 500 turns; long straight

<u>Very</u> schematic

Neutrino Factory Study I

- Study I (1999—2000) instigated by Fermilab
 - http://www.fnal.gov/projects/muon_collider/nu/study/report/machine
 _report/
- Focus on feasibility
 - first attempt to specify NF from end to end
 - approach: base design on (reasonably) well-understood technologies
 - no attempt to optimize either cost or overall performance
- Proper approach at the time, as feasibility was most at issue
- Led to predictable result: feasibility established, performance poor, costs relatively high

Neutrino Factory Study II

- Study II (2000—2001) collaboration of MC, BNL
 - http://www.cap.bnl.gov/mumu/studyii/final_draft/The-Report.pdf
- Goal: maintain convincing feasibility, improve performance substantially
 - optimizing cost again given lower priority
- Result: performance 5x Study I
 1.2 x 10²⁰ vs. 2.5 x 10¹⁹ v_e per year (10⁷ s) per MW
- Cost about 75% of Study I
 - due to choice of 20 GeV rather than 50 GeV

Lessons Learned

- Do "local" optimizations first
- Work as partners with engineers to converge on buildable design

— scoping study does need some engineers as "consultants"

- Simulate entire concept before starting detailed engineering (develop self-consistent solution)
 – complete this step by the end of scoping study
- Facility is costly, O(€2B)

- but, costed in \$, so getting cheaper over time!

Neutrino Factory Study IIa

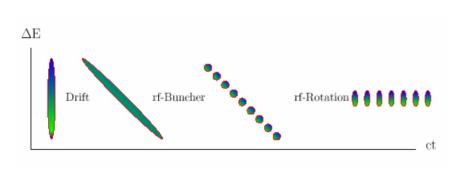
- Already studied portions of NF design space representing
 - low performance, high cost
 - high performance, high cost
- Need to study high performance, "optimized" cost
- Previous work gave good idea what to change
 - replace induction linacs with RF bunching and phase rotation
 - replace RLA with FFAG rings
 - examine trade-offs between amount of cooling and downstream acceptance
- Results available at
 - http://www.aps.org/neutrino/loader.cfm?url=/commonspot/security/ getfile.cfm&PageID=58766

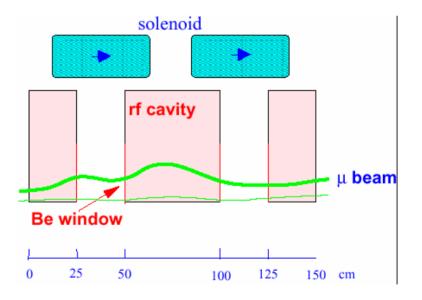
June 25, 2005

NuFact05 WG3 Meeting - Zisman

Buncher and Phase Rotation

FS2: induction linacs to phase rotate, rf to bunch

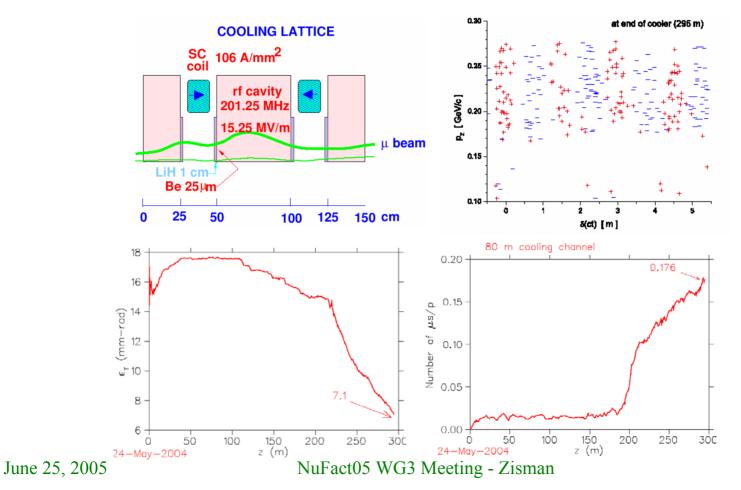

- worked well, but relatively expensive


 \circ keeps only one sign muon


•FS2a: rf to bunch, then rf to phase rotate

— performance less good, but much less expensive

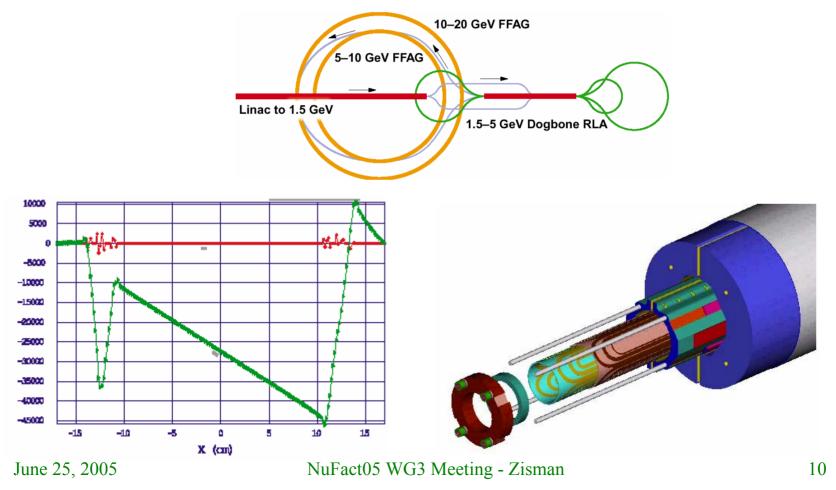
 $_{o}\, \mbox{keeps}$ both $\mu^{\scriptscriptstyle +}$ and $\mu^{\scriptscriptstyle -}$



Cooling

- Cooling channel simplified considerably cf. FS2
 - shorter, fewer magnets, fewer rf cavities, simpler absorbers
 - \circ no LH₂; replace with LiH
 - performs as effectively as FS2 channel...for both signs

Acceleration



FFAGs are cost-effective for accelerating muons

— use eclectic mix of machines to accelerate to 20 GeV

Inac, dogbone RLA, 2 FFAGs...something for everybody!

- SC combined-function magnet appears suitable

Study IIa Cost Improvement

- Compared with Study II, predicted cost reduction in Study IIa was substantial
 - we're on the right track!

	All	No PD	No PD & Tgt.
	(\$M)	(\$M)	(\$M)
FS2	1832	1641	1538
FS2a-scaled (%)	67	63	60

- Development of baseline specifications
 - required proton energy and intensity
 - o beam power, pulse structure, repetition rate, beam energy
 - detector parameters
 - o size, distance from source, technology(?)
 - ${\scriptstyle \circ}\, \text{trade-offs}$ between neutrino intensity and detector size
 - need for both signs simultaneously
 - final energy of muon beam (cost issue)
 - $-\ {\rm trade-offs}$ between cooling and downstream acceptance
- Relative costs of proton driver for selected energies (say 4, 20, and 50 GeV)
 - consider both 1 and 4 MW versions
 - practical intensity limit for 1-3 ns bunches at each energy

Issues to Study (2)

- Practical accelerating gradient and cost per GeV at several frequencies (say, 5, 88, 201 MHz)
 - include power sources as well as cavities
- Performance and cost comparison of alternative acceleration systems (linacs, FFAGs, RLAs,...)
 - for several values of acceptance
 - consider both scaling and non-scaling FFAGs $% \left({{\left({{{\left({{{\left({{{\left({{{\left({{{c}}} \right)}} \right.}$
- Commonalities and differences between Superbeam and Neutrino Factory proton driver, target, and capture sections
 - how do we migrate from one to the other?
 - compare capture efficiency of horn and solenoid into fixed downstream acceptance

- can solenoid (with later sign selection) solution work for both?June 25, 2005NuFact05 WG3 Meeting - Zisman13

Issues to Study (3)

- Storage ring issues have not been looked at carefully in previous U.S. studies
 - do we need multiple baselines simultaneously?
 - triangular ring
 - can multiple signs be alternated between detectors?
 - change magnet polarities periodically
 - or, do we need two storage rings?
 - both beams circulate in same direction but shifted in time relative to each other
- Optical matching to production straight section parameters is non-trivial
 - matching region should be shielded from detector's view
- Instrumentation needs for facility largely ignored to date

June 25, 2005

NuFact05 WG3 Meeting - Zisman

Comments on Issues to Study

- Many of the suggested topics require ("top-down") cost evaluation
 - even the initial scoping study will require engineering resources knowledgeable in accelerator and detector design

 somebody will need to pay for these
- Implications of keeping both signs must be evaluated
 - beam transport, thermal issues, detector issues
- We need to develop tools for end-to-end simulations of alternative facility concepts
 - correlations in the beam and details of the distributions can have significant effect on transmission at the interfaces
 muons have "memory"

- Must ensure common understanding of, and buyin for, the results
 - best if trade-off studies include those from all regions
- Goal is to examine possibilities to choose the best ones
 - not easily done if each group "defends its own choices"
- Study leadership needs to foster this "mixing"

Summary

- Challenge is to try to reach consensus on a single optimized Neutrino Factory scheme
 - if we can do this ourselves, without requiring an uninvolved panel of "wise persons" to do it for us, we have truly accomplished a lot as an international community
- Even if we don't quite succeed in selecting a single design, whatever convergence we attain will improve the probability of having a future international facility
- Developing optimal design requires an adequatelyfunded accelerator R&D program
 - we need to articulate this need and define the ingredients of the program

June 25, 2005