Status report from MuScat

W. Murray, RAL 21st June 2005

P.Bell, S.Bull, T.McMahon, J.Wilson, R.Fernow, P.Gruber, C.Johnson, M.Ellis, A.Jamdagni, K.Long,
E.McKigney, P.Savage, *T.Edgecock*, J.Lidbury, W.Murray, P.Norton, K.Peach, K.Ishida, Y.Matsuda,
K.Nagamine, S.Nakamura, G.Marshall, D.Cline, Y.Fukui, K.Lee, Y.Pischalnikov

Motivation
Description
Data taking
Results

The History

- MuScat to check multiple scattering of Muons at ~100MeV/c
 - Low Z materials for Ionisation cooling
 - Key is liquid Hydrogen
- Engineering run, Triumf 2000
- Physics run, Spring 2003
 - Fibre tracker
- Final results still not available.

Why check Muliple Scattering?

3/33

Ionization cooling is an interaction between cooling and heating

No published data on muon scattering at relevant energies

Electron data from 1942 are the most relevant..

INUFact 05, Frascati, 21st June 2005

William Murray, RAL

NuFact 05, Frascati, 21st June 2005

The SciFi tracker

- 3 double planes
 - Each 512 fibres, x and y
- 3096 fibres
- 30cm by 30cm
- Black resin to reduce light leakage
- 512 scintillating fibres grouped as 256x2
- 24 bundles

William Murray, RAL

- Each in 16mm² grid
- Feeding 256 fibres to 16 anode HPK PMT
- Anodes 16mm by 1mm
- Hard to keep round fibres in square grid
 - ~50% success
- Readout at both SciFi ends gives fibre mapping.

Bundle – PMT mating

Fibre 1mm diameter

- Anode spaced 1mm
- But..1.5mm of glass separating
- Cone angle 29° in glass
 - Up to 0.8mm transverse movement
 - 35% of light on neighbours

PMT 30

William Murray, RAL

 Hit distribution
 This PMT has 1 dead anode. No other does

- Mean signal size
 - Forced in simulation
- Mean signal on neighbours
 not fixed

NuFact 05, Frascati, 21st June 2005

Sci Fi Summary

- Detector was a lot of work to build
 Stable for the run
- Number of P.E. marginal, but OK
- Some cross-talk between channels
 Quite well understood
- It works

Collimator system

Obtain clean beam by collimation

- 80mm lead upstream, 160 mm downstream
- Slits 2mm by 20mm approx.
- 1m long

Use Scintillator as active collimator

11/33

Time of flight

William Murray, RAL

NuFact 05, Frascati, 21st June 2005

Millions of events were collected with each of the following targets.

Pink targets are shown now

	Thickness,	X0,	Events,
Target	mm	%	Millions
Lithium 2	12.78	0.82	2.0
Lithium 1	6.43	0.41	3.0
Lithium 1	6.4	0.41	2.1
Lithium 2	12.72	0.81	3.0
Beryllium	0.98	0.28	3.4
Beryllium	3.73	1.06	3.8
Polyethylene	4.74	0.99	2.0
Carbon	2.5	1.53	2.0
Aluminium	1.5	1.69	3.0
None			6.0
Iron	0.24	1.36	2.2
Iron	5.05	28.68	3.4
Long, empty	150		4.8
Long, full	150	1.53	5.2
short, empty	100		9.5
short, full	100	1.02	6.0

No target: check collimator

Thick steel target, 28% X0

Geant 4.6.1 description good

15/33

Used to study detector response:

Differences assigned to efficiency systematic

William Murray, RAL

NuFact 05, Frascati, 21st June 2005

Thin Steel, 1.36%X0

Numinium, 1.69% X0

Carbon, 1.53% X(

William Murray, RAL

NuFact 05, Frascati, 21st June 2005

hick Beryllium, 1.06% X0

Satisfactory agreement, signs of the ears remain

19/33

Tails are 40% below G4.6.1

William Murray, RAL

NuFact 05, Frascati, 21st June 2005

20/33

Tails lower in data

Very similar to the Beryllium

Needs improved MC description

21/33

Difference propagated as a systematic

William Murray, RAL

^{22/33} 5cm liquid hydrogen, 1.53% X0

Tails noticeably lower in data

Target vessel description systematics *not* in this plot

William Murray, RAL

NuFact 05, Frascati, 21st June 2005

Systematics Considered

These are for all plots:

- Y shift of tracker: 0.3mm
- Z shift of tracker: 5mm
- Steel plot efficiency correction
- Unfolding collimator correction
- Flat background subtracted from MC
- Assume internal veto efficiency 100%
- Tracking done with planes 1+3m not 1+2
- These only for deconvolution plots:
 - Unfold with wrong Geant target
 - Unfolding collimator residual
 - No-target difference

G4.7.0 has tails 50% larger than G4.6.1

blue is systematics red is statistics

Geant model well reproduced here.

Central limit theorem region

Using G4 results as the data the unfolded spectrum is perfect

26/33

Technical test of unfolding

Last bin is overflow

Unfolding: thin Steel, 1.36% X0

Geant 4.6.1 not bad

28/33

Geant 4.7.0 tails too

Geant 4.6.1 deficit at 25mR still visible

Unfolding: Thick Beryllium, 1.06% X0

Andrievsky's factor 2 data excess at 1%

> **Laszlo Urbain** (G4) suggests that was delta rays

Geant 4.7.0 predicts more tails than observed

Geant 4.6.1 much closer to data

Conclusions and Outlook

- Analysis proceeding
 - Systematics well under way.
 - Publication 'soon'.
- Instability in Geant demonstrates value of this data
- Geant 4.6.1 is a reasonable description of multiple scattering in this region
 - Geant 4.7.0 has excessive tails
- Will attempt mini-Mice using Tina
- Andrievsky discrepancy for Lithium not confirmed

Geant instabilities

G4.7.0 has tails 50% larger than G4.6.1

William Murray, RAL

NuFact 05, Frascati, 21st June 2005