Experimental study of resonance crossing

Shinji Machida KEK NuFact05, 24 June, 2005

Contents

- Non scaling FFAG
- Experimental study of resonance crossing
 - Crossing with quadrupole magnets
 - Crossing with acceleration

Non scaling FFAG

- Lattice consists of Quads and Bends just like an ordinary storage ring or synchrotron.
- Because of no chromaticity control, transverse tune changes a lot
 - For example, phase advance per cell is 140 degree at lower end and 40 degree at higher one.
- There are two issues.
 - Acceleration outside of a bucket
 - Resonance crossing during acceleration

HIMAC as non scaling FFAG

- Adequate horizontal aperture
 - Maximum dispersion is ~3 m.
 - Horizontal aperture ~ 0.2 m.
 - dp/p can be shifted with a few percent.
 - Initial emittance is controlled by the number of injection.
- Fancy diagnostics
 - Direct measurement of real space profile.

Experimental study of resonance crossing

•Fix the strength of magnet.

- •Change RF frequency.
- •Initial tune is just above a half integer resonance

Tune diagram

Half resonance crossing with RF acceleration.

Diagnostics (1)

• Sheet beam profile monitor

Dip at the center is due to less sensitive CCD channel.

Diagnostics (2)

• Current transformer (DCCT)

Resonance width (measured)

Orbit shift

У

X

When RF frequency is increased orbit shifts outerward due to positive dispersion.

Projection in horizontal plane

Dip at the center is due to less sensitive CCD channel.

Shift of 10 mm in 40 ms.

Beam loss pattern

Tune at the beginning is below resonance (0).

Tune at the beginning is slightly above resonance (+0.022).

Tune at the beginning is on resonance (+0.011).

Tune at the beginning is above resonance (+0.033).

Beam loss pattern (cont.)

Beam profile evolution

Vertical beam size and beam current

Increase of accelerating rate

df/dt = 65 kHz/s

When df/dt is increased,

Particles are not captured because RF voltage is not enough.

Summary

- Fixing magnetic field of HIMAC, non-scaling FFAG was simulated.
- Particles are lost at half-integer.
 - Crossing speed $\Delta v/dt = -0.0005/ms$
 - Resonance width ~ 0.02
- When df/dt is increased, particles are not trapped because RF voltage is not enough.
- We will try again next month with
 - Correction of resonance to reduce width.
 - Optimization of RF voltage and pattern.
- Similar experiments should be possible in other synchrotron (before construction of e-model).